

Issue Date: August 7, 2017 Ref. Report No. ISL-17LE479CT

Product Name : Display Module Model(s) : Display Module

Responsible Party : WINSTAR Display Co., Ltd. Address : Central Taiwan Science Park

5F., No. 31, Keya Rd., Daya Dist., Taichung City 428, Taiwan

We, International Standards Laboratory, hereby certify that:

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in the EMI part of RCM Mark. The device was passed the test performed according to:

Standards:

AS/NZS CISPR 32:2015: Electromagnetic compatibility of multimedia equipment-Emission requirements Class A

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

International Standards Laboratory

Bert Chen / Director

☐ Hsi-Chih LAB:

No. 65, Gu Dai Keng St. Hsichih, Taipei Hsien 22179, Taiwan. Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

□ Lung-Tan LAB:

No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan Tel: 886-3-407-1718; Fax: 886-3-407-1738

Declaration of Conformity

Name of Manufacturer: WINSTAR Display Co., Ltd.

Address of Manufacturer: Central Taiwan Science Park

5F., No. 31, Keya Rd., Daya Dist., Taichung City 428,

Taiwan

Declares that product: Display Module

Model: Display Module

Assembled by: Same as above Address: Same as above

Conforms to the EMI part of RCM Mark requirements as attested by conformity with the following standards:

AS/NZS CISPR 32:2015: Electromagnetic compatibility of multimedia equipment-Emission requirements Class A

We, WINSTAR Display Co., Ltd., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

WINSTAR Display Co., Ltd.

Date: August 7, 2017

EMI TEST REPORT

RCM Class A

Product: **Display Module**

Model(s): **Display Module**

Brand: WINSTAR

Applicant: WINSTAR Display Co., Ltd.

Address: Central Taiwan Science Park

5F., No. 31, Keya Rd., Daya Dist.,

Taichung City 428, Taiwan

Test Performed by:

International Standards Laboratory

<Lung-Tan LAB>

*Site Registration No.

BSMI: SL2-IN-E-0013; SL2-R1/R2-E-0013; TAF: 0997 FCC: TW1036; IC: IC4067B-1; NEMKO: ELA 113B

VCCI: <Conduction 02>C-11440, T-1676, <Conduction 03>C-2845, T-1464, <Conduction 04>C-4778, T-2295, <Chamber 02>R-1435, G-17,

<Chamber 12>R-2598, G-16, <Chamber 14>G-211,

*Address:

No. 120, Lane 180, Hsin Ho Rd.,

Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel: 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-17LE479CT Issue Date: August 7, 2017

This report totally contains 31 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

Contents of Report

1. General	
1.1 Certification of Accuracy of Test Data	
1.2 Summary of Test Result	
1.3 Description of EUT	
1.4 Description of Support Equipment	
1.5 Software for Controlling Support Unit	
1.6 I/O Cable Condition of EUT and Support Units	
2. Power Main Port Conducted Emissions	
2.1 Test Setup and Procedure	
2.1.1 Test Setup and Procedure	
2.1.2 Test Procedure	
2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies ter	sted)5
2.1.4 Limit	
2.2 Conduction Test Data: Configuration 1	
2.3 Test Setup Photo	9
3. Telecommunication Port Conducted Emissions	11
3.1 Test Setup and Procedure	
3.1.1 Test Setup	
3.1.2 Test Procedure	
3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies ter	
3.1.4 Limit	
4. Radiated Disturbance Emissions	13
4.1 Test Setup and Procedure	
4.1.1 Test Setup	
4.1.2 Test Procedure	
4.1.3 Spectrum Analyzer Configuration (for the frequencies tested)	
4.2 Limit	
4.3 Radiation Test Data: Configuration 1	
4.4 Test Setup Photo	
5. Voltage Disturbance Emissions at Antenna Terminals	
5.1 Test Setup and Procedure	
5.1.1 Test Setup	
5.1.2 Test Procedure	
5.1.3 EMI Receiver Configuration (for the frequencies tested)	
6. Differential Voltage Emissions	
6.1 Test Setup and Procedure	
6.1.1 Test Setup and Flocedule	
6.1.2 Test Procedure	
6.1.3 EMI Receiver Configuration (for the frequencies tested)	
6.1.4 Limit	
7. Appendix	27
7.1 Appendix A: Test Equipment	
7.1.1 Test Equipment List	
7.1.2 Software for Controlling Spectrum/Receiver and Calculating Test Data	
7.2 Appendix B: Uncertainty of Measurement	

1. General

1.1 Certification of Accuracy of Test Data

AS/NZS CISPR 32:2015: Electromagnetic compatibility **Standards:**

of multimedia equipment- Emission requirements

Class A

Display Module **Equipment Tested:**

Display Module Model(s):

WINSTAR Brand:

WINSTAR Display Co., Ltd. **Applicant:**

August 4, 2017 **Sample received Date:**

refer to the date of test data Final test Date:

International Standards Laboratory Test Site:

Conduction 02; Chamber 12; Chamber 14

Test Distance: 10M; 3M (above1GHz)

refer to each site test data **Temperature:**

refer to each site test data **Humidity:**

86 kPa to 106 kPa **Atmospheric Pressure:**

Conduction input power: AC 230 V / 50 Hz Input power:

Radiation input power: AC 230 V / 50 Hz

Report Number: ISL-17LE479CT

PASS Test Result:

Cheryl Tung Report Engineer:

Test Engineer:

Bear Perns
Angus Ohu **Approved By:**

Angus Chu / Director

1.2 Summary of Test Result

Performed Item	Test Performed	Deviation	Result
Conducted emissions from the AC mains power ports	Yes	No	PASS
Telecommunication Port Conducted Emissions (asymmetric mode)	Yes	No	PASS
Radiated emissions at frequencies below 1 GHz	Yes	No	PASS
Radiated emissions at frequencies above 1 GHz	Yes	No	PASS
Radiated emissions from FM receivers	N/A	N/A	N/A
Voltage Disturbance Emissions at Antenna Terminals	N/A	N/A	N/A
Differential voltage emissions	N/A	N/A	N/A
Outdoor units of home satellite receiving systems	N/A	N/A	N/A

1.3 Description of EUT

EUT

Description	Display Module	
Condition	Pre-Production	
Model	Display Module	
Serial Number	N/A	
Highest working frequency: 165MHz		
The radiation test should be tested till 2GHz		

The devices can be installed inside the EUT are listed below:

Components	Vendor	Model Name
	el WINSTAR Display Co., Ltd.	WF50BTIFGDHGX#
LCD Panel		WF50BTIFGDHTX#
		WF50BTIFGDHNX#

The I/O ports of EUT are listed below:

I/O Port Type	Quantity
HDMI Port	1
Micro USB Port	1

Pretest Test configuration:

Configuration	LCD Panel Volt	
1	WF50BTIFGDHNX#	230V
2	WF50BTIFGDHNX#	110V

All the devices listed below are chosen by the applicant to be the representative configuration for testing in this report.

Test configuration:

Configuration	LCD Panel	Voltage
1	WF50BTIFGDHNX#	230V

EMI Noise Source:

Please refer to the technical documentation for details

EMI Solution:

Please refer to the technical documentation for details

1.4 Description of Support Equipment

No	Unit	Model / Serial No.	Brand	Power Cord	FCC ID
1	AC Adapter	ADP-10AW S/N: N/A	Lenovo	N/A	N/A
2	Control Personal Computer	RASPBERRY PI 3 MODEL B S/N: N/A	Raspberry Pi Foundation	N/A	N/A

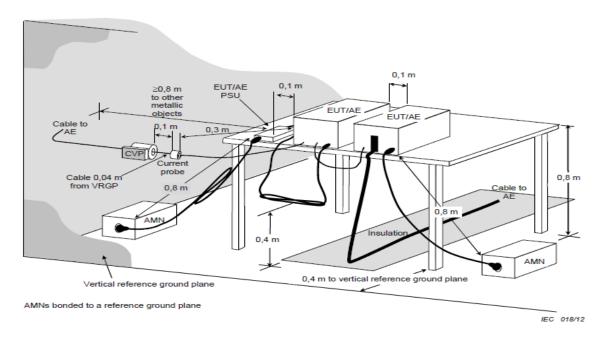
1.5 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

- 1. Send Color Bar to the EUT through EUT HDMI Port..
- 2. Repeat the above steps.

	Filename	Issued Date
EUT Monitor	Omplayer	06/05/2016

1.6 I/O Cable Condition of EUT and Support Units


Description	Path	Cable Length	Cable Type
USB Power Cable	AC Adapter USB port to Control Personal Computer Micro USB Port	1.0m	Shielded
HDMI Data Cable	EUT HDMI Port to Control Personal Computer HDMI Port	1.8m	Shielded (With core)

2. Power Main Port Conducted Emissions

2.1 Test Setup and Procedure

2.1.1 Test Setup

2.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, live and neutral, were measured. All of the interface cables were manipulated according to EN 55032 & AS/NZS CISPR 32 requirements.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 150KHz--30MHz

Detector Function: Quasi-Peak / Average Mode

Resolution Bandwidth: 9KHz

2.1.4 Limit

Conducted emissions from the AC mains power ports of Class A equipment:

Frequency	QP	AV
MHz	$dB(\mu V)$	dB(μV)
0.15-0.50	79	73
5.0-30	66	60
Note: The lower limit shall apply at the transition frequencies		

Conducted emissions from the AC mains power ports of Class B equipment:

Frequency	QP	AV	
MHz	$dB(\mu V)$	dB(μV)	
0.15-0.50	66-56	56-46	
0.50-5.0	56	46	
5.0-30	5.0-30 60 50		
Note: The lower limit shall apply at the transition frequencies			

2.2 Conduction Test Data: Configuration 1

- Live

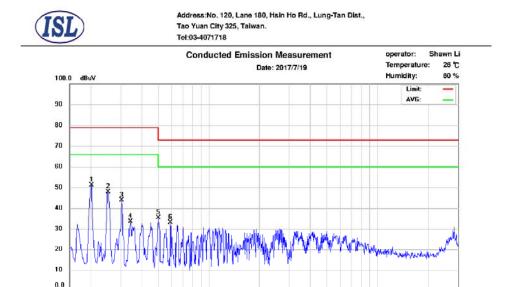
No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.150	42.17	28.39	9.70	51.87	79.00	-27.13	38.09	66.00	-27.91
2	0.202	40.47	30.86	9.76	50.23	79.00	-28.77	40.62	66.00	-25.38
3	0.258	32.67	22.74	9.75	42.42	79.00	-36.58	32.49	66.00	-33.51
4	0.350	29.41	18.84	9.75	39.16	79.00	-39.84	28.59	66.00	-37.41
5	0.406	29.27	19.81	9.75	39.02	79.00	-39.98	29.56	66.00	-36.44
6	0.458	26.09	19.61	9.75	35.84	79.00	-43.16	29.36	66.00	-36.64

Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = QP R/AVG R + Correct Factor

Correct Factor = LISN Loss + Cable Loss


A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

30.000

- Neutral

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.202	39.66	22.65	9.71	49.37	79.00	-29.63	32.36	66.00	-33.64
2	0.254	35.70	24.13	9.70	45.40	79.00	-33.60	33.83	66.00	-32.17
3	0.306	29.99	18.85	9.69	39.68	79.00	-39.32	28.54	66.00	-37.46
4	0.346	27.64	11.20	9.69	37.33	79.00	-41.67	20.89	66.00	-45.11
5	0.506	26.44	20.43	9.70	36.14	73.00	-36.86	30.13	60.00	-29.87
6	0.594	15.09	1.85	9.72	24.81	73.00	-48.19	11.57	60.00	-48.43

Phase:

Note:

Margin = QP/AVG Emission - Limit

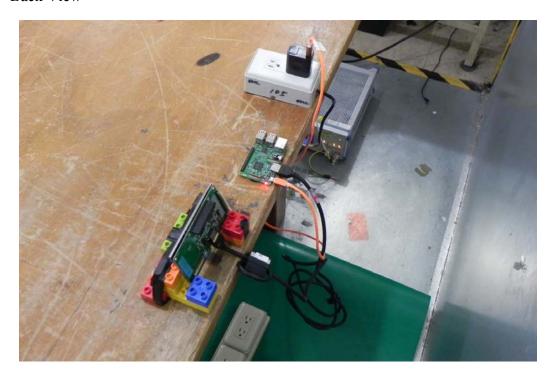
Site: Conduction 02

QP/AVG Emission = QP_R/AVG_R + Correct Factor

Correct Factor = LISN Loss + Cable Loss

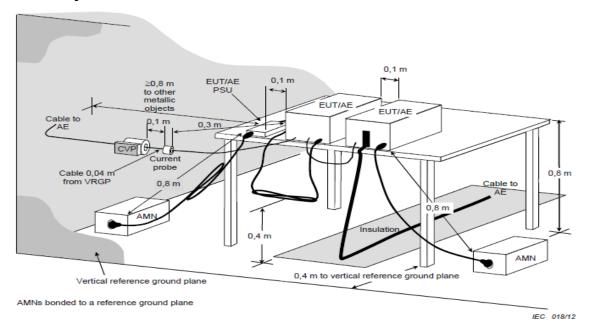
A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.


2.3 Test Setup Photo

Front View

Back View



3. Telecommunication Port Conducted Emissions

3.1 Test Setup and Procedure

3.1.1 Test Setup

3.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

The EUT, any support equipment, and any interconnecting cables were arranged and moved to get the maximum measurement. All of the interface cables were manipulated according to EN 55032 & AS/NZS CISPR 32 requirements.

The port of the EUT was connected to the support equipment through the ISN and linked in normal condition.

AC input power for the EUT & the support equipment power outlets were obtained from the same filtered source that provided input power to the LISN.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information could be useful in reducing their amplitude.

Report Number: ISL-17LE479CT

3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 150KHz--30MHz

Detector Function: Quasi-Peak / Average Mode

Resolution Bandwidth: 9KHz

3.1.4 Limit

Asymmetric mode conducted emissions from Class A equipment:

Applicable to

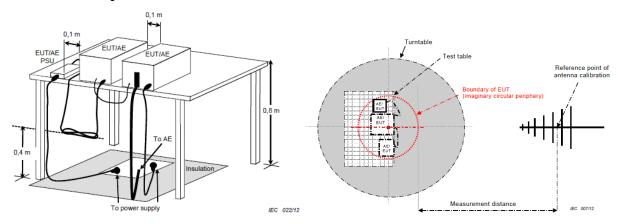
- 1. wired network ports.
- 2. optical fibre ports with metallic shield or tension members.
- 3. antenna ports.

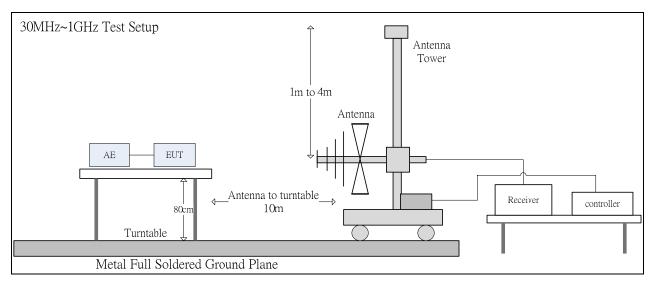
Frequency range MHz	Coupling device	Detector type / bandwidth	Class A voltage limits dB(μV)	Class A current limits dB(µA)
0.15-0.5 0.5-30	AAN	Quasi Peak / 9 kHz	97-87 87	n/a
0.15-0.5 0.5-30	AAN	Average / 9 kHz	84-74 74	II/a
0.15-0.5	CVP	Quasi Peak / 9 kHz	97-87	53-43
0.5-30	and current probe	Quasi i cak / 3 ki iz	87	43
0.15-0.5	CVP	Average / 9 kHz	84-74	40-30
0.5-30	and current probe	Average / 9 KHZ	74	30
0.15-0.5	Current Probe	Quasi Peak / 9 kHz		53-43
0.5-30	Current Frone	Quasi reak / 9 kmz	n/a	43
0.15-0.5	Current Probe	Average / 9 kHz	11/a	40-30
0.5-30	Current Front	Avelage / 9 KHZ		30

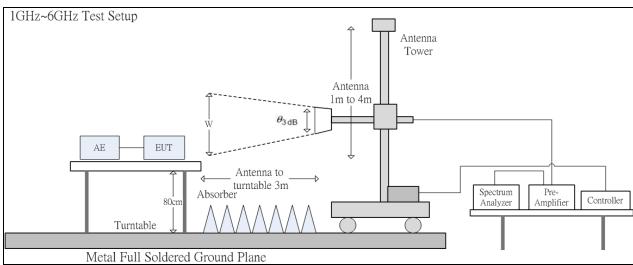
Asymmetric mode conducted emissions from Class B equipment: Applicable to:

- 1. wired network ports.
- 2. optical fibre ports with metallic shield or tension members.
- 3. broadcast receiver tuner ports.
- 4. antenna ports.

Frequency range MHz	Coupling device	Detector type / bandwidth	Class B voltage limits dB(µV)	Class B current limits dB(µA)	
0.15-0.5	AAN	AAN Quasi Peak / 9 kHz			
0.5-30	7 27 27 1	Quasi i cuit / 3 iti iz	74	n/a	
0.15-0.5	AAN	Average / 9 kHz	74-64	11/α	
0.5-30	AAN	Average / 9 KHZ	64		
0.15-0.5	CVP	Ovagi Dagle / O leHe	84-74	40-30	
0.5-30	and current probe	Quasi Peak / 9 kHz	74	30	
0.15-0.5	CVP	Average / 9 kHz	74-64	30-20	
0.5-30	and current probe	Average / 9 KHZ	64	20	
0.15-0.5	Current Probe	Quasi Peak / 9 kHz		40-30	
0.5-30	Current Probe	Quasi reak / 9 kmz	n/a	30	
0.15-0.5	Current Probe	A waraga / 0 1/Hz	11/a	30-20	
0.5-30	Current Probe	Average / 9 kHz		20	


^{**}Remarks: It is not necessary to be tested on this item.




4. Radiated Disturbance Emissions

4.1 Test Setup and Procedure

4.1.1 Test Setup

The 3dB beam width of the horn antenna used for the test is as shown in the table below.

Fraguency (CHz)	E plana	U nlana	$\theta_{2dR}(\cdot)$	d= 3 m
Frequency (GHz)	E-plane	H-plane	θ_{3dB} (min)	w (m)
1	88°	147°	88°	5.79
2	68°	119°	68°	4.04
3	73°	92°	73°	4.44
4	70°	89°	70°	4.20
5	55°	60°	55°	3.12
6	63°	62°	62°	3.60

4.1.2 Test Procedure

The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter open field sites or 10 meter chamber. Desktop EUT are set up on a FRP stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 6 GHz were analyzed in details by operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings. All of the interface cables were manipulated according to EN 55032 & AS/NZS CISPR 32 requirements.

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.

If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

4.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 30MHz--1000MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz

Frequency Range: Above 1 GHz to 6 GHz Detector Function: Peak/Average Mode

Resolution Bandwidth: 1MHz

4.2 Limit

Radiated emissions at frequencies up to 1 GHz for Class A equipment:

Eraguanay ranga	Measu	rement	Class A limits dB(μV/m)
Frequency range MHz	Distance m	Detector type / bandwidth	OATS/SAC
30-230	10		40
230-1000	10	Quasi Peak /	47
30-230	2	120 kHz	50
230-1000	3		57

Radiated emissions at frequencies above 1 GHz for Class A equipment:

Eraguanay ranga	Measu	rement	Class A limits dB(μV/m)
Frequency range MHz	Distance	Detector type /	FSOATS
IVITIZ	m	bandwidth	FSOATS
1000-3000		Average /	56
3000-6000	2	1MHz	60
1000-3000	3	Peak /	76
3000-6000		1MHz	80

Radiated emissions at frequencies up to 1 GHz for Class B equipment:

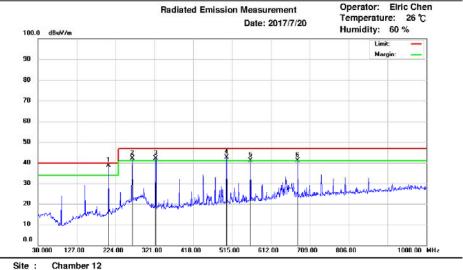
Eraguanay ranga	Measu	rement	Class B limits dB(µV/m)
Frequency range MHz	Distance Detector type / bandwidth		OATS/SAC
30-230	10		30
230-1000	10	Quasi Peak /	37
30-230	2	120 kHz	40
230-1000	3		47

Radiated emissions at frequencies above 1 GHz for Class B equipment:

Eraguanay ranga	Measu	rement	Class B limits dB(µV/m)
Frequency range MHz	Distance	Detector type /	FSOATS
11112	m	bandwidth	1501115
1000-3000		Average /	50
3000-6000	2	1MHz	54
1000-3000	3	Peak /	70
3000-6000		1MHz	74

Radiated emissions from FM receivers:

Addition of the first of the fi								
Г	N.	leasurement	Class B limits dB(µV/m)					
Frequency range	Distance	Detector type /	Fundamental	Harmonics				
MHz	m	bandwidth	OATS/SAC	OATS/SAC				
30-230				42				
230-300	10	Quasi Peak /	50	42				
300-1000				46				
30-230		120 kHz		52				
230-300	3		60	52				
300-1000				56				



4.3 Radiation Test Data: Configuration 1

- Radiated Emissions (Horizontal)

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718

Polarization: Horizontal

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	206.54	57.68	-18.93	38.75	40.00	-1.25	100	285	peak
2	265.71	58.33	-16.16	42.17	47.00	-4.83	100	303	peak
3	323.91	56.22	-14.20	42.02	47.00	-4.98	373	291	peak
4	501.42	52.33	-9.80	42.53	47.00	-4.47	100	236	peak
5	560.59	49.99	-8.88	41.11	47.00	-5.89	245	326	peak
6	678.93	47.87	-6.68	41.19	47.00	-5.81	100	67	peak

* Note:

Margin = Emission - Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718

Site: Conduction 02
Polarization: Horizontal

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1445.00	55.42	-15.61	39.81	76.00	-36.19	100	125	peak
2	1595.00	55.76	-14.81	40.95	76.00	-35.05	100	345	peak
3	1625.00	57.17	-14.56	42.61	76.00	-33.39	399	181	peak
4	1650.00	56.64	-14.35	42.29	76.00	-33.71	238	10	peak
5	1710.00	55.02	-13.87	41.15	76.00	-34.85	125	70	peak
6	1770.00	56.78	-13.38	43.40	76.00	-32.60	183	346	peak

* Note:

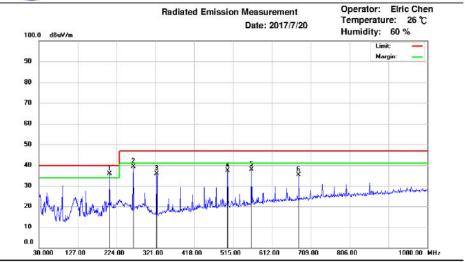
Margin = Emission - Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Horn Antenna Distance: 3 meters


Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

-Radiated Emissions (Vertical)

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718

Site: Chamber 12

Polarization:

Report Number: ISL-17LE479CT

Vertical

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	206.54	54.89	-18.93	35.96	40.00	-4.04	100	156	peak
2	265.71	55.61	-16.16	39.45	47.00	-7.55	398	112	peak
3	323.91	50.05	-14.20	35.85	47.00	-11.15	315	291	peak
4	501.42	47.09	-9.80	37.29	47.00	-9.71	382	342	peak
5	560.59	46.72	-8.88	37.84	47.00	-9.16	100	161	peak
6	678.93	42.12	-6.68	35.44	47.00	-11.56	274	198	peak

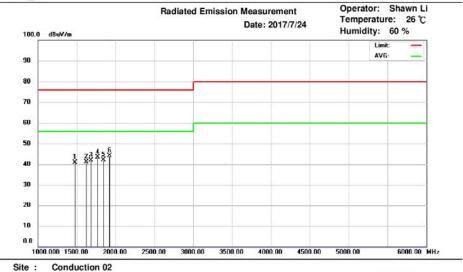
* Note:

Margin = Emission - Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit


BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718

Polarization: Vertical

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1475.00	56.53	-15.60	40.93	76.00	-35.07	100	125	peak
2	1625.00	55.75	-14.56	41.19	76.00	-34.81	333	187	peak
3	1680.00	56.06	-14.11	41.95	76.00	-34.05	131	11	peak
4	1770.00	56.83	-13.38	43.45	76.00	-32.55	158	177	peak
5	1845.00	54.83	-12.77	42.06	76.00	-33.94	100	103	peak
6	1920.00	56.17	-12.15	44.02	76.00	-31.98	141	211	peak

* Note:

Margin = Emission - Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain

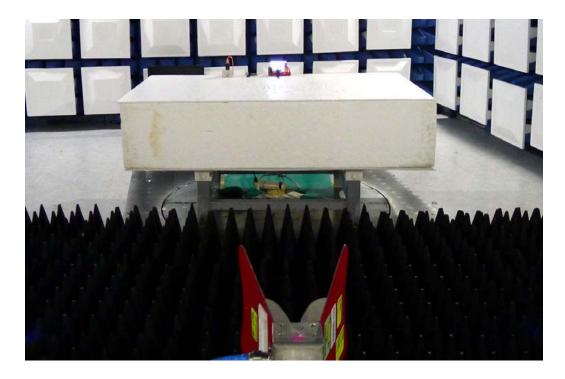
A margin of -8dB means that the emission is 8dB below the limit

Horn Antenna Distance: 3 meters

 $Above\ 1GHz\ test, if\ the\ peak\ measured\ value\ meets\ the\ average\ limit,\ it\ is\ unnecessary\ to\ perform\ the\ average\ measurement.$

4.4 Test Setup Photo

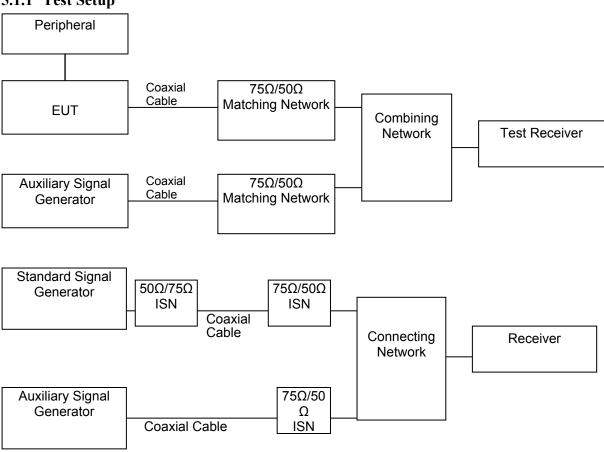
Front View (30MHz~1GHz)



Back View (30MHz~1GHz)

Front View (above 1GHz)

Back View (above 1GHz)



5. Voltage Disturbance Emissions at Antenna Terminals

5.1 Test Setup and Procedure

5.1.1 Test Setup

5.1.2 Test Procedure

The output level of the auxiliary signal generator was set to 70dBuV at the EUT antenna terminal with 75 ohms impedance with an un-modulated carrier.

The highest emissions were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The power of EUT was switched off to make sure the emission was not contributed by the auxiliary signal generator. While doing so, the interconnecting cables and major parts of the system were moved around to maximize the emission.

Report Number: ISL-17LE479CT

5.1.3 EMI Receiver Configuration (for the frequencies tested)

Frequency Range: 30MHz-2150MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz

5.1.4 Limit

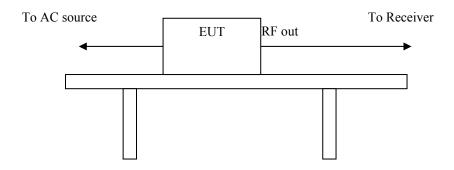
Applicable to:

- 1. TV broadcast receiver tuner ports with an accessible connector.
- 2. RF modulator output ports.
- 3. FM broadcast receiver tuner ports with an accessible connector.

Table clause	Frequency	Detector type/ bandwidth		Class B lim dB(μV) 75	Applicability	
	MHz		Other	Local Oscillator Fundamental	Local Oscillator Harmonics	
A12.1	30 – 950		46	46	46	See a)
	950 – 2 150	For frequencies ≤1 GHz	46	54	54	
A12.2	950 – 2 150	Quasi Peak/	46	54	54	See b)
A12.3	30 – 300	120 kHz	46	54	50	See c)
	300 – 1 000				52	
A12.4	30 – 300	For frequencies	46	66	59	See d)
	300 – 1 000	≥1 GHz			52	
A12.5	30 – 950	Peak/ 1 MHz	46	76	46	See e)
	950 – 2 150	2		n/a	54	

Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

- b) Tuner units (not the LNB) for satellite signal reception.
- c) Frequency modulation audio receivers and PC tuner cards.
- d) Frequency modulation car radios.
- e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.


^{**}Remarks: It is not necessary to be tested on this item.

6. Differential Voltage Emissions

6.1 Test Setup and Procedure

6.1.1 Test Setup

6.1.2 Test Procedure

The output level of the auxiliary signal generator was set to 70dBuV at the EUT antenna terminal with 75 ohms impedance with an un-modulated carrier.

The highest emissions were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The power of EUT was switched off to make sure the emission was not contributed by the auxiliary signal generator. While doing so, the interconnecting cables and major parts of the system were moved around to maximize the emission.

Report Number: ISL-17LE479CT

6.1.3 EMI Receiver Configuration (for the frequencies tested)

Frequency Range: 30MHz-2150MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz

6.1.4 Limit

Applicable to:

- 1. TV broadcast receiver tuner ports with an accessible connector.
- 2. RF modulator output ports.
- 3. FM broadcast receiver tuner ports with an accessible connector.

Table clause	Frequency range	Detector type/ bandwidth	Class B limits dB(μV) 75 Ω			Applicability
	MHz		Other	Local Oscillator Fundamental	Local Oscillator Harmonics	
A12.1	30 – 950		46	46	46	See a)
	950 – 2 150	For frequencies ≤1 GHz	46	54	54	
A12.2	950 – 2 150	Quasi Peak/	46	54	54	See b)
A12.3	30 – 300	120 kHz	46	54	50	See c)
	300 – 1 000				52	
A12.4	30 – 300	For frequencies	46	66	59	See d)
	300 – 1 000	≥1 GHz			52	
A12.5	30 – 950	Peak/ 1 MHz	46	76	46	See e)
	950 – 2 150	2		n/a	54	

Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

- b) Tuner units (not the LNB) for satellite signal reception.
- c) Frequency modulation audio receivers and PC tuner cards.
- d) Frequency modulation car radios.
- e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.

^{**}Remarks: It is not necessary to be tested on this item.

7. Appendix

7.1 Appendix A: Test Equipment

7.1.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
Con02					Date	Date
Conduction 02	LISN 20	R&S	ENV216	101477	07/15/2017	07/15/2018
Conduction 02	LISN 23	FCC	FCC-LISN-50-	07038	12/30/2016	12/30/2017
			25-2-01			
Conduction 02	Conduction 02-1	WOKEN	CFD 300-NL	Conduction	08/29/2016	08/29/2017
	Cable			02 -1		
Conduction 02	EMI Receiver 14	ROHDE&	ESCI	101034	06/06/2017	06/06/2018
		SCHWARZ				

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
Chmb12					Date	Date
Radiation (Chamber12)	BILOG Antenna 18		Schwarzbeck VULB 9168+EMCI-N- 6-05		01/05/2017	01/05/2018
Radiation (Chamber12)	Preamplifier 26	EMCI	EMC9135	980297	12/27/2016	12/27/2017
Radiation (Chamber12)	Coaxial Cable Chmb 12-10M-01	PEWC	CFD400-NL	Chmb 12-10M-01	10/13/2016	10/13/2017
Radiation (Chamber12)	EMI Receiver 10	ROHDE & SCHWARZ	ESCI	100567	08/11/2016	08/11/2017

Location Chmb14	Equipment Name	Brand	Model			Next Cal. Date
Rad. Above 1GHz	Spectrum Analyzer 24 (1G~26.5GHz)	Agilent	N9010A	MY49060537	08/11/2016	08/11/2017
Rad. Above 1GHz	Horn Antenna 06 (1G~18G)	ETS	3117	00066665	11/30/2016	11/30/2017
Rad. Above 1GHz	Preamplifier 13 (1G-18G)	MITEQ	JS44-00101800 -25-10P-44	1329256	08/12/2016	08/12/2017
Rad. Above 1GHz	Microwave Cable 24	HUBER SUHNER	EMC104-NM-S M-800	140905	09/26/2016	09/26/2017
Rad. Above 1GHz	Microwave Cable 29	EMC Instruments	EMC104-NM-S M-6000	170107	02/23/2017	02/23/2018

7.1.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Site	Filename	Version	Issue Date	
Conduction/Radiation	EZ EMC	ISL-03A2	3/6/2013	

7.2 Appendix B: Uncertainty of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2011. The coverage factor k = 2 yields approximately a 95 % level of confidence.

Report Number: ISL-17LE479CT

<Conduction 02> AMN: ±2.88dB

<Chamber 12 (10M)>

Horizontal

 $30MHz\sim200MHz$: $\pm 3.93dB$ $200MHz\sim1000MHz$: $\pm 4.09dB$

Vertical

30MHz~200MHz: ±4.58dB 200MHz~1000MHz: ±3.99dB

<Chamber 14 (3M)>

 $1GHz\sim6GHz$: $\pm4.94dB$