

Issue Date: August 2, 2017 Ref. Report No. ISL-17LE479CE

Product Name : Display Module
Model(s) : Display Module
Brand : WINSTAR

Applicant : WINSTAR DISPLAY CO., LTD.
Address : Central Taiwan Science Park

5F., No. 31, Keya Rd., Daya Dist., Taichung City 428, Taiwan

#### We, International Standards Laboratory, hereby certify that:

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in European Council Directive- EMC Directive 2014/30/EU. The device was passed the test performed according to:

# $\epsilon$

#### **Standards:**

EN 55032:2012+AC:2013, CISPR 32:2012

AS/NZS CISPR 32:2013

EN 55032:2015+AC:2016, CISPR 32: 2015+COR1:2016

**AS/NZS CISPR 32:2015** 

EN 61000-3-2:2014 and IEC 61000-3-2:2014 EN 61000-3-3: 2013 and IEC 61000-3-3: 2013

EN 55024: 2010+A1:2015 and CISPR 24: 2010+A1:2015

EN 61000-4-2: 2009 and IEC 61000-4-2: 2008 EN 61000-4-3: 2006+A1: 2008 +A2: 2010 and IEC 61000-4-3:2006+A1: 2007+A2: 2010 EN 61000-4-4:2012 and IEC 61000-4-4:2012 EN 61000-4-5: 2014 and IEC 61000-4-5: 2014

EN 61000-4-6:2014+AC:2015 and IEC 61000-4-6:2013

EN 61000-4-8: 2010 and IEC 61000-4-8: 2009 EN 61000-4-11: 2004 and IEC 61000-4-11: 2004

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

**International Standards Laboratory** 

☐ Hsi-Chih LAB:

No. 65, Gu Dai Keng Street, Hsi-Chih Dist., New Taipei City 221, Taiwan

Tel: 886-2-2646-2550; Fax: 886-2-2646-4641







## **□** Lung-Tan LAB:

No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan

Tel: 886-3-407-1718; Fax: 886-3-407-1738







Best Chen / Director

# CE MARK TECHNICAL FILE

# AS/NZS EMC CONSTRUCTION FILE

of

**Product Name** 

**Display Module** 

Model

**Display Module** 

Brand

## WINSTAR

#### Contains:

- 1. Declaration of Conformity
- 2. EN55032/CISPR 32, AS/NZS CISPR 32 EMI test report
- 3. EN55024/CISPR 24, EN61000-3-2 / IEC 61000-3-2, and EN61000-3-3 / IEC 61000-3-3 test report
- 4. Block Diagram and Schematics
- 5. Users' manual

#### **Declaration of Conformity**

Name of Responsible Party: WINSTAR DISPLAY CO., LTD.

Address of Manufacturer: Central Taiwan Science Park

5F., No. 31, Keya Rd., Daya Dist., Taichung City 428,

Taiwan

Declares that product: Display Module

Model: Display Module

Brand: WINSTAR

Assembled by: Same as above

Address: Same as above

Conforms to the EMC Directive 2014/30/EU as attested by conformity with the following harmonized standards:

EN 55032:2012+AC:2013, CISPR 32:2012: Electromagnetic compatibility of multimedia equipment - Emission requirements

AS/NZS CISPR 32:2013: Electromagnetic compatibility of multimedia equipment- Emission requirements

EN 55032:2015+AC:2016, CISPR 32: 2015+COR1:2016: Electromagnetic compatibility of multimedia equipment - Emission requirements.

AS/NZS CISPR 32:2015: Electromagnetic compatibility of multimedia equipment- Emission requirements

| Performed Item                                               | Test Performed | Deviation | Result |
|--------------------------------------------------------------|----------------|-----------|--------|
| Conducted emissions from the AC mains power ports            | Yes            | No        | PASS   |
| Telecommunication Port Conducted Emissions (asymmetric mode) | Yes            | No        | PASS   |
| Radiated emissions at frequencies below 1 GHz                | Yes            | No        | PASS   |
| Radiated emissions at frequencies above 1 GHz                | Yes            | No        | PASS   |
| Radiated emissions from FM receivers                         | N/A            | N/A       | N/A    |
| Voltage Disturbance Emissions at Antenna<br>Terminals        | N/A            | N/A       | N/A    |
| Differential voltage emissions                               | N/A            | N/A       | N/A    |
| Outdoor units of home satellite receiving systems            | N/A            | N/A       | N/A    |

EN 55024:2010+A1:2015 and CISPR 24:2010+A1:2015: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

| Standard                                                                 | Description                                             | Results | Criteria |
|--------------------------------------------------------------------------|---------------------------------------------------------|---------|----------|
| EN 61000-4-2:2009<br>IEC 61000-4-2:2008                                  | Electrostatic Discharge                                 | Pass    | В        |
| EN 61000-4-3:2006+A1:2008 +A2:2010<br>IEC 61000-4-3:2006+A1:2007+A2:2010 | Radio-Frequency, Electromagnetic Field                  | Pass    | A        |
| EN 61000-4-4:2012<br>IEC 61000-4-4:2012                                  | Electrical Fast Transient/Burst                         | Pass    | В        |
| EN 61000-4-5:2014<br>IEC 61000-4-5:2014                                  | Surge                                                   | Pass    | В        |
| EN 61000-4-6:2014+AC:2015<br>IEC 61000-4-6:2013                          | Conductive Disturbance                                  | Pass    | A        |
| EN 61000-4-8:2010<br>IEC 61000-4-8:2009                                  | Power Frequency Magnetic Field                          | Pass    | A        |
| EN 61000-4-11:2004<br>IEC 61000-4-11:2004                                | Voltage Dips / Short Interruption and Voltage Variation |         |          |
|                                                                          | >95% in 0.5 period                                      | Pass    | В        |
|                                                                          | 30% in 25 period                                        | Pass    | С        |
|                                                                          | >95% in 250 period                                      | Pass    | С        |

| Standard                                | Description                                                                | Results |
|-----------------------------------------|----------------------------------------------------------------------------|---------|
| EN 61000-3-2:2014<br>IEC 61000-3-2:2014 | Limits for harmonics current emissions                                     | Pass    |
| EN 61000-3-3:2013<br>IEC 61000-3-3:2013 | Limits for voltage fluctuations and flicker in low-voltage supply systems. | Pass    |

We, WINSTAR DISPLAY CO., LTD., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

WINSTAR DISPLAY CO., LTD.

Date: August 2, 2017

### **Declaration of Conformity**

Name of Responsible Party: WINSTAR DISPLAY CO., LTD.

Address of Manufacturer: Central Taiwan Science Park

5F., No. 31, Keya Rd., Daya Dist., Taichung City 428,

Taiwan

Declares that product: Display Module

Model: Display Module

Brand: WINSTAR

Assembled by: Same as above

Address: Same as above

Conforms to the EMI part of RCM Mark requirements as attested by conformity with the following standards:

AS/NZS CISPR 32:2013: Class A: Electromagnetic compatibility of multimedia equipment- Emission requirements

AS/NZS CISPR 32:2015: Electromagnetic compatibility of multimedia equipment-Emission requirements

We, WINSTAR DISPLAY CO., LTD., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

WINSTAR DISPLAY CO., LTD.

Date: August 2, 2017

## CE TEST REPORT

of

## EN55032 / CISPR 32 / AS/NZS CISPR 32 Class A EN55024 / CISPR 24 / IMMUNITY EN61000-3-2 / EN61000-3-3

Product: **Display Module** 

Model(s): **Display Module** 

Brand: WINSTAR

Applicant: WINSTAR DISPLAY CO., LTD.

Address: Central Taiwan Science Park

5F., No. 31, Keya Rd., Daya Dist.,

Taichung City 428, Taiwan

## Test Performed by:

## **International Standards Laboratory**

<Lung-Tan LAB>

\*Site Registration No.

BSMI: SL2-IN-E-0013; SL2-R1/R2-E-0013; TAF: 0997 FCC: TW1036; IC: IC4067B-1; NEMKO: ELA 113B

VCCI: <Conduction 02>C-11440, T-1676, <Conduction 03>C-2845, T-1464, <Conduction 04>C-4778, T-2295, <Chamber 02>R-1435, G-17,

<Chamber 12>R-2598, G-16, <Chamber 14>G-211,

\*Address:

No. 120, Lane 180, Hsin Ho Rd.,

Lung-Tan Dist., Tao Yuan City 325, Taiwan \*Tel: 886-3-407-1718; Fax: 886-3-407-1738

Report No.: **ISL-17LE479CE** Issue Date: **August 2, 2017** 

This report totally contains 60 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.



## **Contents of Report**

| 1.  | General                                                         | l  |
|-----|-----------------------------------------------------------------|----|
| 1.1 | Certification of Accuracy of Test Data                          | 1  |
| 1.2 | Test Standards                                                  | 2  |
| 1.3 | Description of EUT                                              | 5  |
| 1.4 | Description of Support Equipment                                | 6  |
| 1.5 |                                                                 |    |
| 1.6 | I/O Cable Condition of EUT and Support Units                    | 6  |
| 2.  | Power Main Port Conducted Emissions                             | 7  |
| 2.1 | Test Setup and Procedure                                        | 7  |
| 2.2 | Conduction Test Data: Configuration 1                           | 9  |
| 2.3 |                                                                 | 11 |
| 3.  | Telecommunication Port Conducted Emissions                      | 13 |
| 3.1 |                                                                 |    |
| 4.  | Radiated Disturbance Emissions                                  | 15 |
| 4.1 | Test Setup and Procedure                                        | 15 |
| 4.2 | Limit                                                           | 17 |
| 4.3 | Radiation Test Data: Configuration 1                            | 19 |
| 4.4 | Test Setup Photo                                                | 23 |
| 5.  | Voltage Disturbance Emissions at Antenna Terminals              | 25 |
| 5.1 | Test Setup and Procedure                                        | 25 |
| 6.  | Differential Voltage Emissions                                  | 27 |
| 6.1 | Test Setup and Procedure                                        | 27 |
| 7.  | Outdoor units of home satellite receiving systems               | 29 |
| 7.1 | Test Setup and Procedure                                        | 29 |
| 8.  | Electrostatic discharge (ESD) immunity                          | 31 |
| 8.1 | Test Specification and Setup                                    | 31 |
| 8.2 | Test Point                                                      | 32 |
| 8.3 | Test Setup Photo                                                | 33 |
| 9.  | Radio-Frequency, Electromagnetic Field immunity                 | 34 |
| 9.1 | Test Specification and Setup                                    | 34 |
| 9.2 | Test Setup Photo                                                | 35 |
| 10. | Electrical Fast transients/burst immunity                       | 36 |
| 10. | 1 Test Specification and Setup                                  | 36 |
| 10. | 2 Test Setup Photo                                              | 38 |
| 11. | Surge Immunity                                                  | 39 |
| 11. | 1 Test Specification and Setup                                  | 39 |
| 11. | 2 Test Setup Photo                                              | 40 |
| 12. | · · · · · · · · · · · · · · · · · · ·                           |    |
| 12. | 1 Test Specification and Setup                                  | 41 |
| 12. | r                                                               |    |
| 13. | Power Frequency Magnetic Field immunity                         |    |
| 13. | 1 Test Specification and Setup                                  | 43 |
| 13. | $\mathbf{r}$                                                    |    |
|     | Voltage Dips, Short Interruption and Voltage Variation immunity |    |
| 14. | 1 Test Specification and Setup                                  | 45 |
| 14. | 2 Test Setup Photo                                              | 46 |



| 15. H | larmonics                                                               | 47 |
|-------|-------------------------------------------------------------------------|----|
| 15.1  | Test Specification and Setup                                            | 47 |
| 16. V | oltage Fluctuations                                                     | 49 |
| 16.1  | Test Specification and Setup                                            | 49 |
| 16.2  | Test Data                                                               | 50 |
| 16.3  | Test Setup Photo                                                        | 51 |
| 17. A | ppendix                                                                 | 52 |
| 17.1  | Appendix A: Test Equipment                                              | 52 |
| 17.2  | Appendix B: Uncertainty of Measurement                                  | 55 |
| 17.3  | Appendix C: Photographs of EUT Please refer to the File of ISL-17LE479P | 56 |



## 1. General

#### 1.1 Certification of Accuracy of Test Data

**Standards:** Please refer to 1.2

**Equipment Tested:** Display Module

Model: Display Module

Brand: WINSTAR

**Applicant:** WINSTAR DISPLAY CO., LTD.

**Sample received Date:** July 19, 2017

**Final test Date:** EMI: refer to the date of test data

EMS: July 26, 2017

**Test Site:** International Standards Laboratory

Chamber 12; Chamber 14; Conduction 02; Immunity 02

**Test Distance:** 10M; 3M (above1GHz) (EMI test)

**Temperature:** refer to each site test data

**Humidity:** refer to each site test data

**Atmospheric Pressure:** 86 kPa to 106 kPa

**Input power:** Conduction input power: AC 230 V / 50 Hz

Radiation input power: AC 230 / 50 Hz

Immunity input power: AC 230 V / 50 Hz

**Test Result:** PASS

**Test Engineer:** 

**Approved By:** 

**Report Engineer:** Cheryl Tung

1) 482

Bear Perng

Angus Chu / Director



#### 1.2 Test Standards

The tests which this report describes were conducted by an independent electromagnetic compatibility consultant, International Standards Laboratory in accordance with the following

EN 55032:2012+AC:2013, CISPR 32:2012: Class A: Electromagnetic compatibility of multimedia equipment - Emission requirements

AS/NZS CISPR 32:2013: Class A: Electromagnetic compatibility of multimedia equipment- Emission requirements

EN 55032:2015+AC:2016, CISPR 32: 2015+COR1:2016: Class A: Electromagnetic compatibility of multimedia equipment - Emission requirements.

AS/NZS CISPR 32:2015: Class A: Electromagnetic compatibility of multimedia equipment- Emission requirements

| Performed Item                                               | Test Performed | Deviation | Result |
|--------------------------------------------------------------|----------------|-----------|--------|
| Conducted emissions from the AC mains power ports            | Yes            | No        | PASS   |
| Telecommunication Port Conducted Emissions (asymmetric mode) | Yes            | No        | PASS   |
| Radiated emissions at frequencies below 1 GHz                | Yes            | No        | PASS   |
| Radiated emissions at frequencies above 1 GHz                | Yes            | No        | PASS   |
| Radiated emissions from FM receivers                         | N/A            | N/A       | N/A    |
| Voltage Disturbance Emissions at Antenna<br>Terminals        | N/A            | N/A       | N/A    |
| Differential voltage emissions                               | N/A            | N/A       | N/A    |
| Outdoor units of home satellite receiving systems            | N/A            | N/A       | N/A    |



# EN 55024:2010+A1:2015 and CISPR 24:2010+A1:2015: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

| Standard                                                                 | Description                                             | Results | Criteria |
|--------------------------------------------------------------------------|---------------------------------------------------------|---------|----------|
| EN 61000-4-2:2009<br>IEC 61000-4-2:2008                                  | Electrostatic Discharge                                 | Pass    | В        |
| EN 61000-4-3:2006+A1:2008 +A2:2010<br>IEC 61000-4-3:2006+A1:2007+A2:2010 | Radio-Frequency, Electromagnetic Field                  | Pass    | A        |
| EN 61000-4-4:2012<br>IEC 61000-4-4:2012                                  | Electrical Fast Transient/Burst                         | Pass    | В        |
| EN 61000-4-5:2014<br>IEC 61000-4-5:2014                                  | Surge                                                   | Pass    | В        |
| EN 61000-4-6:2014+AC:2015<br>IEC 61000-4-6:2013                          | Conductive Disturbance                                  | Pass    | A        |
| EN 61000-4-8:2010<br>IEC 61000-4-8:2009                                  | Power Frequency Magnetic Field                          | Pass    | A        |
| EN 61000-4-11:2004<br>IEC 61000-4-11:2004                                | Voltage Dips / Short Interruption and Voltage Variation |         |          |
|                                                                          | >95% in 0.5 period                                      | Pass    | В        |
|                                                                          | 30% in 25 period                                        | Pass    | С        |
|                                                                          | >95% in 250 period                                      | Pass    | С        |

| Standard                                | Description                                                                | Results |
|-----------------------------------------|----------------------------------------------------------------------------|---------|
| EN 61000-3-2:2014<br>IEC 61000-3-2:2014 | Limits for harmonics current emissions                                     | Pass    |
| EN 61000-3-3:2013<br>IEC 61000-3-3:2013 | Limits for voltage fluctuations and flicker in low-voltage supply systems. | Pass    |



#### 1.2.1 Performance Criteria for Compliance: EN 55024

#### Performance criterion A

During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

#### Performance criterion B

After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

#### **Performance criterion C**

During and after testing, a temporary loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.



#### 1.3 Description of EUT

## **EUT**

| Description                                   | Display Module |  |
|-----------------------------------------------|----------------|--|
| Condition                                     | Pre-Production |  |
| Model                                         | Display Module |  |
| Serial Number                                 | N/A            |  |
| Highest working frequency: 165MHz             |                |  |
| The radiation test should be tested till 2GHz |                |  |

#### The devices can be installed inside the EUT are listed below:

| Components | Vendor                       | Model Name     |
|------------|------------------------------|----------------|
|            | WINSTAR Display Co.,<br>Ltd. | WF50BTIFGDHGX# |
| LCD Panel  |                              | WF50BTIFGDHTX# |
|            |                              | WF50BTIFGDHNX# |

The I/O ports of EUT are listed below:

| I/O Port Type  | Quantity |
|----------------|----------|
| HDMI Port      | 1        |
| Micro USB Port | 1        |

**Pretest Test configuration:** 

| Configuration | LCD Panel      | Voltage |
|---------------|----------------|---------|
| 1             | WF50BTIFGDHNX# | 230V    |
| 2             | WF50BTIFGDHNX# | 110V    |

All the devices listed below are chosen by the applicant to be the representative configuration for testing in this report.

Test configuration:

| Configuration | LCD Panel      | Voltage |
|---------------|----------------|---------|
| 1             | WF50BTIFGDHNX# | 230V    |

**Report Number: ISL-17LE479CE** 

#### **EMI Noise Source:**

Please refer to the technical documentation for details

#### **EMI Solution:**

Please refer to the technical documentation for details



#### 1.4 Description of Support Equipment

| No | Unit                         | Model / Serial No.                    | Brand                      | Power Cord | FCC ID |
|----|------------------------------|---------------------------------------|----------------------------|------------|--------|
| 1  | AC Adapter                   | ADP-10AW<br>S/N: N/A                  | Lenovo                     | N/A        | N/A    |
| 2  | Control Personal<br>Computer | RASPBERRY PI 3<br>MODEL B<br>S/N: N/A | Raspberry Pi<br>Foundation | N/A        | N/A    |

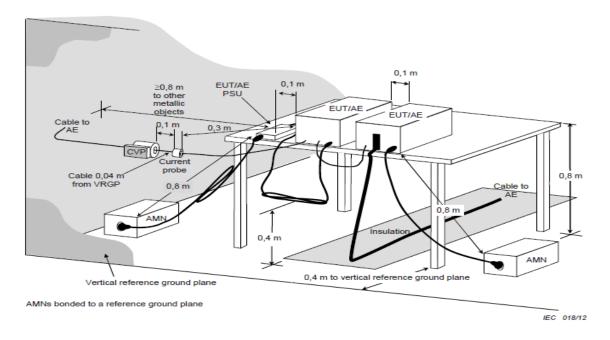
## 1.5 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

- 1. Send Color Bar to the EUT through EUT HDMI Port..
- 2. Repeat the above steps.

|             | Filename | Issued Date |
|-------------|----------|-------------|
| EUT Monitor | Omplayer | 06/05/2016  |

## 1.6 I/O Cable Condition of EUT and Support Units


| Description     | Path                                                               | Cable Length | <b>Cable Type</b>    |
|-----------------|--------------------------------------------------------------------|--------------|----------------------|
| USB Power Cable | AC Adapter USB port to Control<br>Personal Computer Micro USB Port | 1.0m         | Shielded             |
| HDMI Data Cable | EUT HDMI Port to Control Personal<br>Computer HDMI Port            | 1.8m         | Shielded (With core) |



## 2. Power Main Port Conducted Emissions

#### 2.1 Test Setup and Procedure

#### 2.1.1 Test Setup



#### 2.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, live and neutral, were measured. All of the interface cables were manipulated according to EN 55032 requirements.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

#### 2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 150KHz--30MHz

Detector Function: Quasi-Peak / Average Mode

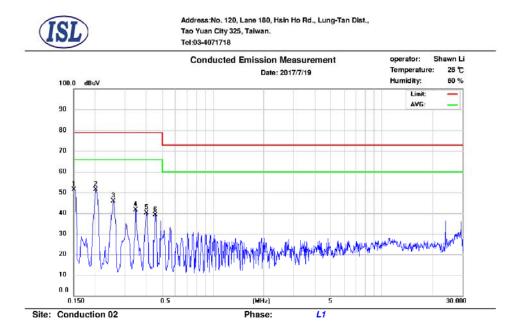
Resolution Bandwidth: 9KHz



#### **2.1.4** Limit

Conducted emissions from the AC mains power ports of Class A equipment:

| Frequency                                                       | QP          | AV          |  |  |
|-----------------------------------------------------------------|-------------|-------------|--|--|
| MHz                                                             | $dB(\mu V)$ | $dB(\mu V)$ |  |  |
| 0.15-0.50                                                       | 79          | 73          |  |  |
| 5.0-30                                                          | 66          | 60          |  |  |
| Note: The lower limit shall apply at the transition frequencies |             |             |  |  |


Conducted emissions from the AC mains power ports of Class B equipment:

| Frequency                                                       | QP     | AV          |  |  |  |
|-----------------------------------------------------------------|--------|-------------|--|--|--|
| MHz                                                             | dB(μV) | $dB(\mu V)$ |  |  |  |
| 0.15-0.50                                                       | 66-56  | 56-46       |  |  |  |
| 0.50-5.0                                                        | 56     | 46          |  |  |  |
| 5.0-30 60 50                                                    |        |             |  |  |  |
| Note: The lower limit shall apply at the transition frequencies |        |             |  |  |  |



#### 2.2 Conduction Test Data: Configuration 1

## - Live



| No. | Frequency<br>(MHz) | QP_Fi<br>(dBuV) | AVG_R<br>(dBuV) | Correct<br>Factor<br>(dB) | QP<br>Emission<br>(dBuV) | QP<br>Limit<br>(dBuV) | QP<br>Margin<br>(dB) | AVG<br>Emission<br>(dBuV) | AVG<br>Limit<br>(dBuV) | AVG<br>Margin<br>(dB) |
|-----|--------------------|-----------------|-----------------|---------------------------|--------------------------|-----------------------|----------------------|---------------------------|------------------------|-----------------------|
| 1   | 0.150              | 42.17           | 28.39           | 9.70                      | 51.87                    | 79.00                 | -27.13               | 38.09                     | 66.00                  | -27.91                |
| 2   | 0.202              | 40.47           | 30.86           | 9.76                      | 50.23                    | 79.00                 | -28.77               | 40.62                     | 66.00                  | -25.38                |
| 3   | 0.258              | 32.67           | 22.74           | 9.75                      | 42.42                    | 79.00                 | -36.58               | 32.49                     | 66.00                  | -33.51                |
| 4   | 0.350              | 29.41           | 18.84           | 9.75                      | 39.16                    | 79.00                 | -39.84               | 28.59                     | 66.00                  | -37.41                |
| 5   | 0.406              | 29.27           | 19.81           | 9.75                      | 39.02                    | 79.00                 | -39.98               | 29.56                     | 66.00                  | -36.44                |
| 6   | 0.458              | 26.09           | 19.61           | 9.75                      | 35.84                    | 79.00                 | -43.16               | 29.36                     | 66.00                  | -36.64                |

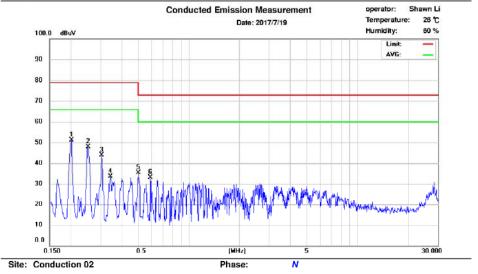
Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = QP\_R/AVG\_R + Correct Factor

Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.



#### - Neutral



Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Talwan. Tel:03-4071718



| No. | Frequency<br>(MHz) | QP_R<br>(dBuV) | AVG_R<br>(dBuV) | Correct<br>Factor<br>(dB) | QP<br>Emission<br>(dBuV) | QP<br>Limit<br>(dBuV) | QP<br>Margin<br>(dB) | AVG<br>Emission<br>(dBuV) | AVG<br>Limit<br>(dBuV) | AVG<br>Margin<br>(dB) |
|-----|--------------------|----------------|-----------------|---------------------------|--------------------------|-----------------------|----------------------|---------------------------|------------------------|-----------------------|
| 1   | 0.202              | 39.66          | 22.65           | 9.71                      | 49.37                    | 79.00                 | -29.63               | 32.36                     | 66.00                  | -33.64                |
| 2   | 0.254              | 35.70          | 24.13           | 9.70                      | 45.40                    | 79.00                 | -33.60               | 33.83                     | 66.00                  | -32.17                |
| 3   | 0.306              | 29.99          | 18.85           | 9.69                      | 39.68                    | 79.00                 | -39.32               | 28.54                     | 66.00                  | -37.46                |
| 4   | 0.346              | 27.64          | 11.20           | 9.69                      | 37.33                    | 79.00                 | -41.67               | 20.89                     | 66.00                  | -45.11                |
| 5   | 0.506              | 26.44          | 20.43           | 9.70                      | 36.14                    | 73.00                 | -36.86               | 30.13                     | 60.00                  | -29.87                |
| 6   | 0.594              | 15.09          | 1.85            | 9.72                      | 24.81                    | 73.00                 | -48.19               | 11.57                     | 60.00                  | -48.43                |

Note:

Margin = QP/AVG Emission - Limit

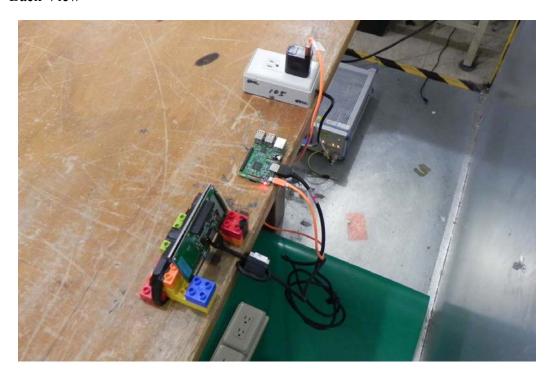
QP/AVG Emission =  $QP_R/AVG_R + Correct$  Factor

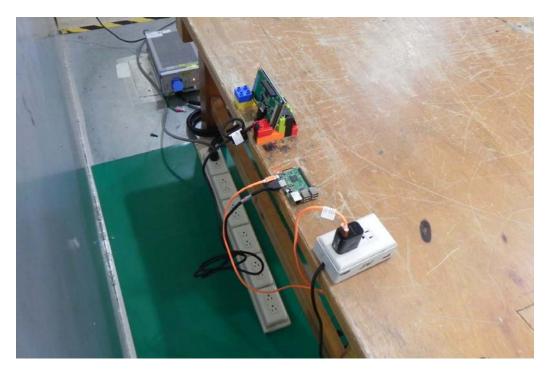
Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.




## 2.3 Test Setup Photo


Front View





Back View







## 3. Telecommunication Port Conducted Emissions

#### 3.1 Test Setup and Procedure

#### 3.1.1 Test Setup



#### 3.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

The EUT, any support equipment, and any interconnecting cables were arranged and moved to get the maximum measurement. All of the interface cables were manipulated according to EN 55032 requirements.

The port of the EUT was connected to the support equipment through the ISN and linked in normal condition.

AC input power for the EUT & the support equipment power outlets were obtained from the same filtered source that provided input power to the LISN.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information could be useful in reducing their amplitude.

#### 3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 150KHz--30MHz

Detector Function: Quasi-Peak / Average Mode

Resolution Bandwidth: 9KHz



#### **3.1.4** Limit

# Asymmetric mode conducted emissions from Class A equipment: Applicable to

- 1. wired network ports.
- 2. optical fibre ports with metallic shield or tension members.

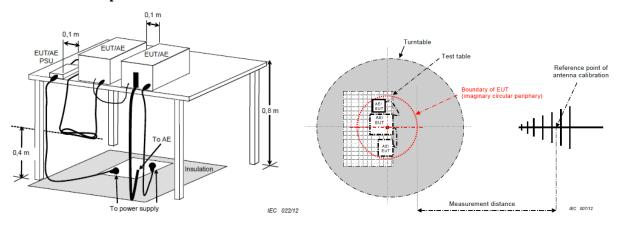
3. antenna ports.

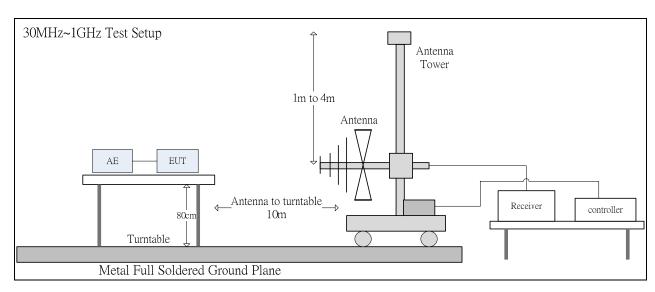
| 5. antenna por ts.  |                   |                              |                               |                               |  |
|---------------------|-------------------|------------------------------|-------------------------------|-------------------------------|--|
| Frequency range MHz | Coupling device   | Detector type /<br>bandwidth | Class A voltage limits dB(μV) | Class A current limits dB(µA) |  |
| 0.15-0.5<br>0.5-30  | AAN               | Quasi Peak / 9 kHz           | 97-87<br>87                   | <b></b> /o                    |  |
| 0.15-0.5<br>0.5-30  | AAN               | Average / 9 kHz              | 84-74<br>74                   | n/a                           |  |
| 0.15-0.5            | CVP               | Quasi Peak / 9 kHz           | 97-87                         | 53-43                         |  |
| 0.5-30              | and current probe | Quasi Feak / 9 KHZ           | 87                            | 43                            |  |
| 0.15-0.5            | CVP               | Average / 9 kHz              | 84-74                         | 40-30                         |  |
| 0.5-30              | and current probe | Average / 9 KHZ              | 74                            | 30                            |  |
| 0.15-0.5            | Current Probe     | Quasi Peak / 9 kHz           |                               | 53-43                         |  |
| 0.5-30              | Current Frode     | Quasi Feak / 9 KMZ           | n/a                           | 43                            |  |
| 0.15-0.5            | Current Probe     | Ayaraga / 0 1/Hz             | 11/a                          | 40-30                         |  |
| 0.5-30              | Current Frode     | Average / 9 kHz              |                               | 30                            |  |

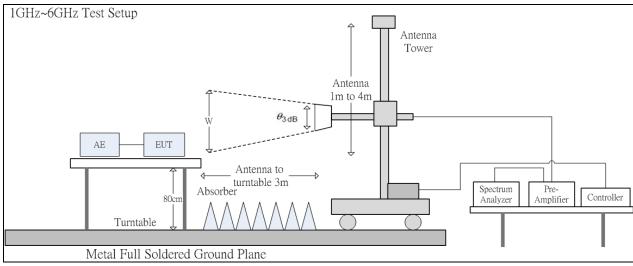
# Asymmetric mode conducted emissions from Class B equipment: Applicable to:

- 1. wired network ports.
- 2. optical fibre ports with metallic shield or tension members.
- 3. broadcast receiver tuner ports.
- 4. antenna ports.

| Frequency range MHz | Coupling device   | Detector type /<br>bandwidth | Class B voltage limits dB(µV) | Class B current limits dB(µA) |
|---------------------|-------------------|------------------------------|-------------------------------|-------------------------------|
| 0.15-0.5            | AAN               | Quasi Peak / 9 kHz           | 84-74                         |                               |
| 0.5-30              | 4.437             | A / 0.1 II                   | 74<br>74-64                   | n/a                           |
| 0.5-30              | AAN               | Average / 9 kHz              | 64                            |                               |
| 0.15-0.5            | CVP               | Quasi Peak / 9 kHz           | 84-74                         | 40-30                         |
| 0.5-30              | and current probe | Quasi Feak / 9 KHZ           | 74                            | 30                            |
| 0.15-0.5            | CVP               | Axxara ca / 0 1/11/2         | 74-64                         | 30-20                         |
| 0.5-30              | and current probe | Average / 9 kHz              | 64                            | 20                            |
| 0.15-0.5            | Current Droba     | Ouagi Dagle / O leHe         |                               | 40-30                         |
| 0.5-30              | Current Probe     | Quasi Peak / 9 kHz           | 70/0                          | 30                            |
| 0.15-0.5            | Current Probe     | A / O 1-II-                  | n/a                           | 30-20                         |
| 0.5-30              | Current Probe     | Average / 9 kHz              |                               | 20                            |


<sup>\*\*</sup>Remarks: It is not necessary to be tested on this item.





## 4. Radiated Disturbance Emissions

#### 4.1 Test Setup and Procedure

#### 4.1.1 Test Setup









The 3dB beam width of the horn antenna used for the test is as shown in the table below.

| Fraguency (GHz) | E plana | U nlana | θ2 dB ()             | d= 3 m |
|-----------------|---------|---------|----------------------|--------|
| Frequency (GHz) | E-plane | H-plane | $\theta_{3dB}$ (min) | w (m)  |
| 1               | 88°     | 147°    | 88°                  | 5.79   |
| 2               | 68°     | 119°    | 68°                  | 4.04   |
| 3               | 73°     | 92°     | 73°                  | 4.44   |
| 4               | 70°     | 89°     | 70°                  | 4.20   |
| 5               | 55°     | 60°     | 55°                  | 3.12   |
| 6               | 63°     | 62°     | 62°                  | 3.60   |

#### 4.1.2 Test Procedure

The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter open field sites or 10 meter chamber. Desktop EUT are set up on a FRP stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 6 GHz were analyzed in details by operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings. All of the interface cables were manipulated according to EN 55032 requirements.

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.

If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.



#### 4.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 30MHz--1000MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz

Frequency Range: Above 1 GHz to 6 GHz Detector Function: Peak/Average Mode

Resolution Bandwidth: 1MHz

#### 4.2 Limit

Radiated emissions at frequencies up to 1 GHz for Class A equipment:

| E                   | Measu         | rement                    | Class A limits dB(μV/m) |
|---------------------|---------------|---------------------------|-------------------------|
| Frequency range MHz | Distance<br>m | Detector type / bandwidth | OATS/SAC                |
| 30-230              | 10            |                           | 40                      |
| 230-1000            | 10            | Quasi Peak /              | 47                      |
| 30-230              | 2             | 120 kHz                   | 50                      |
| 230-1000            | 3             |                           | 57                      |

Radiated emissions at frequencies above 1 GHz for Class A equipment:

| Emaguamayı mamga    | Measu    | rement          | Class A limits $dB(\mu V/m)$ |
|---------------------|----------|-----------------|------------------------------|
| Frequency range MHz | Distance | Detector type / | FSOATS                       |
| IVITIZ              | m        | bandwidth       | FSOATS                       |
| 1000-3000           |          | Average /       | 56                           |
| 3000-6000           | 2        | 1MHz            | 60                           |
| 1000-3000           | 3        | Peak /          | 76                           |
| 3000-6000           |          | 1MHz            | 80                           |

Radiated emissions at frequencies up to 1 GHz for Class B equipment:

| Frequency range MHz | Measu         | rement                    | Class B limits dB(µV/m) |  |
|---------------------|---------------|---------------------------|-------------------------|--|
|                     | Distance<br>m | Detector type / bandwidth | OATS/SAC                |  |
| 30-230              | 10            |                           | 30                      |  |
| 230-1000            | 10            | Quasi Peak /              | 37                      |  |
| 30-230              | 2             | 120 kHz                   | 40                      |  |
| 230-1000            | 5             |                           | 47                      |  |

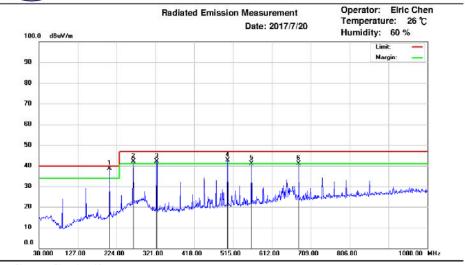


Radiated emissions at frequencies above 1 GHz for Class B equipment:

|                     | Measu         | rement                    | Class B limits dB(µV/m) |  |
|---------------------|---------------|---------------------------|-------------------------|--|
| Frequency range MHz | Distance<br>m | Detector type / bandwidth | FSOATS                  |  |
| 1000-3000           |               | Average /                 | 50                      |  |
| 3000-6000           | 2             | 1MHz                      | 54                      |  |
| 1000-3000           | 3             | Peak /                    | 70                      |  |
| 3000-6000           |               | 1MHz                      | 74                      |  |

## **Radiated emissions from FM receivers:**

| Г               | M        | leasurement     | Class B limits dB(μV/m) |           |  |
|-----------------|----------|-----------------|-------------------------|-----------|--|
| Frequency range | Distance | Detector type / | Fundamental             | Harmonics |  |
| MHz             | m        | bandwidth       | OATS/SAC                | OATS/SAC  |  |
| 30-230          |          |                 |                         | 42        |  |
| 230-300         | 10       |                 | 50                      | 42        |  |
| 300-1000        |          | Quasi Peak /    |                         | 46        |  |
| 30-230          |          | 120 kHz         |                         | 52        |  |
| 230-300         | 3        |                 | 60                      | 52        |  |
| 300-1000        |          |                 |                         | 56        |  |




## 4.3 Radiation Test Data: Configuration 1

#### - Radiated Emissions (Horizontal)



Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718



Site: Chamber 12

Polarization:

**Report Number: ISL-17LE479CE** 

Horizontal

|   | Mk. | Frequency<br>(MHz) | RX_R<br>(dBuV) | Correct<br>Factor(dB/m) | Emission<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant.Pos<br>(cm) | Tab.Pos<br>(deg.) | Detector |
|---|-----|--------------------|----------------|-------------------------|----------------------|-------------------|----------------|-----------------|-------------------|----------|
| [ | 1   | 206.54             | 57.68          | -18.93                  | 38.75                | 40.00             | -1.25          | 100             | 285               | peak     |
| [ | 2   | 265.71             | 58.33          | -16.16                  | 42.17                | 47.00             | -4.83          | 100             | 303               | peak     |
| [ | 3   | 323.91             | 56.22          | -14.20                  | 42.02                | 47.00             | -4.98          | 373             | 291               | peak     |
| [ | 4   | 501.42             | 52.33          | -9.80                   | 42.53                | 47.00             | -4.47          | 100             | 236               | peak     |
|   | 5   | 560.59             | 49.99          | -8.88                   | 41.11                | 47.00             | -5.89          | 245             | 326               | peak     |
|   | 6   | 678.93             | 47.87          | -6.68                   | 41.19                | 47.00             | -5.81          | 100             | 67                | peak     |

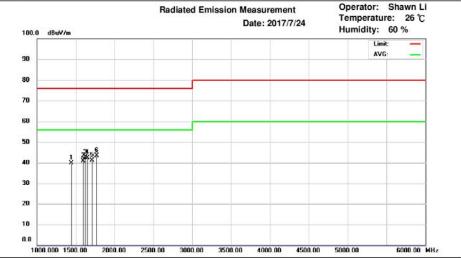
\* Note:

Margin = Emission - Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit


BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.





Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718



Site: Conduction 02
Polarization: Horizontal

| Mk. | Frequency<br>(MHz) | RX_R<br>(dBuV) | Correct<br>Factor(dB/m) | Emission<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant.Pos<br>(cm) | Tab.Pos<br>(deg.) | Detector |
|-----|--------------------|----------------|-------------------------|----------------------|-------------------|----------------|-----------------|-------------------|----------|
| 1   | 1445.00            | 55.42          | -15.61                  | 39.81                | 76.00             | -36.19         | 100             | 125               | peak     |
| 2   | 1595.00            | 55.76          | -14.81                  | 40.95                | 76.00             | -35.05         | 100             | 345               | peak     |
| 3   | 1625.00            | 57.17          | -14.56                  | 42.61                | 76.00             | -33.39         | 399             | 181               | peak     |
| 4   | 1650.00            | 56.64          | -14.35                  | 42.29                | 76.00             | -33.71         | 238             | 10                | peak     |
| 5   | 1710.00            | 55.02          | -13.87                  | 41.15                | 76.00             | -34.85         | 125             | 70                | peak     |
| 6   | 1770.00            | 56.78          | -13.38                  | 43.40                | 76.00             | -32.60         | 183             | 346               | peak     |

#### \* Note:

Margin = Emission - Limit

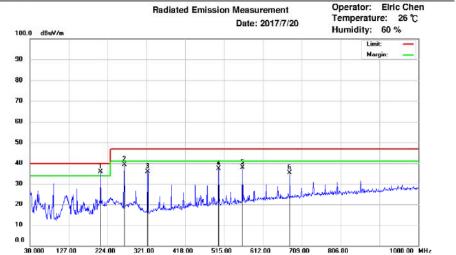
Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Horn Antenna Distance: 3 meters

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.




## -Radiated Emissions (Vertical)



Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718

Vertical



Site: Chamber 12 Polarization:

| Mk. | Frequency<br>(MHz) | RX_R<br>(dBuV) | Correct<br>Factor(dB/m) | Emission<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant.Pos<br>(cm) | Tab.Pos<br>(deg.) | Detector |
|-----|--------------------|----------------|-------------------------|----------------------|-------------------|----------------|-----------------|-------------------|----------|
| 1   | 206.54             | 54.89          | -18.93                  | 35.96                | 40.00             | -4.04          | 100             | 156               | peak     |
| 2   | 265.71             | 55.61          | -16.16                  | 39.45                | 47.00             | -7.55          | 398             | 112               | peak     |
| 3   | 323.91             | 50.05          | -14.20                  | 35.85                | 47.00             | -11.15         | 315             | 291               | peak     |
| 4   | 501.42             | 47.09          | -9.80                   | 37.29                | 47.00             | -9.71          | 382             | 342               | peak     |
| 5   | 560.59             | 46.72          | -8.88                   | 37.84                | 47.00             | -9.16          | 100             | 161               | peak     |
| 6   | 678.93             | 42.12          | -6.68                   | 35.44                | 47.00             | -11.56         | 274             | 198               | peak     |

#### \* Note:

Margin = Emission - Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit


BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.





Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718



Site: Conduction 02

Polarization: Vertical

| Mk. | Frequency<br>(MHz) | RX_R<br>(dBuV) | Correct<br>Factor(dB/m) | Emission<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant.Pos<br>(cm) | Tab.Pos<br>(deg.) | Detector |
|-----|--------------------|----------------|-------------------------|----------------------|-------------------|----------------|-----------------|-------------------|----------|
| 1   | 1475.00            | 56.53          | -15.60                  | 40.93                | 76.00             | -35.07         | 100             | 125               | peak     |
| 2   | 1625.00            | 55.75          | -14.56                  | 41.19                | 76.00             | -34.81         | 333             | 187               | peak     |
| 3   | 1680.00            | 56.06          | -14.11                  | 41.95                | 76.00             | -34.05         | 131             | 11                | peak     |
| 4   | 1770.00            | 56.83          | -13.38                  | 43.45                | 76.00             | -32.55         | 158             | 177               | peak     |
| 5   | 1845.00            | 54.83          | -12.77                  | 42.06                | 76.00             | -33.94         | 100             | 103               | peak     |
| 6   | 1920.00            | 56.17          | -12.15                  | 44.02                | 76.00             | -31.98         | 141             | 211               | peak     |

#### \* Note:

Margin = Emission - Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

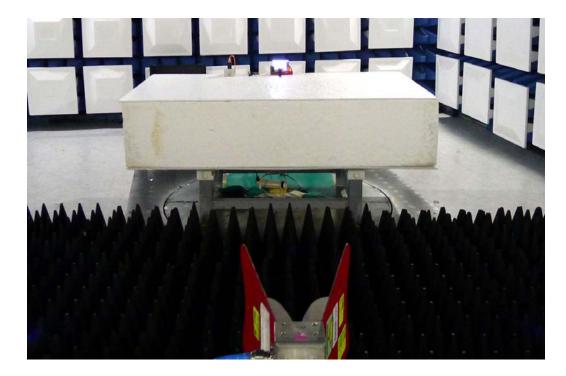
Horn Antenna Distance: 3 meters

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.




## 4.4 Test Setup Photo

Front View (30MHz~1GHz)




Back View (30MHz~1GHz)

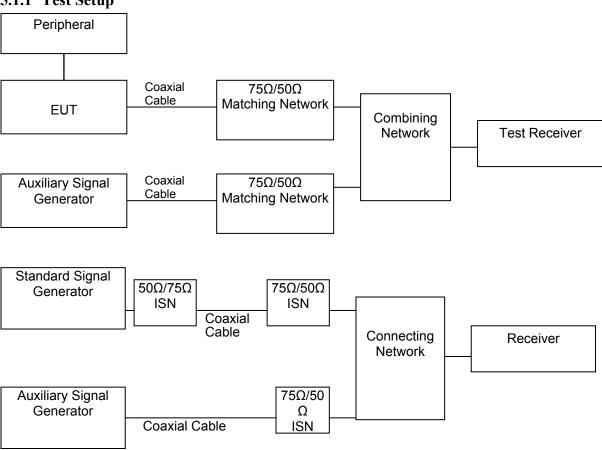




Front View (above 1GHz)



Back View (above 1GHz)






## 5. Voltage Disturbance Emissions at Antenna Terminals

#### **5.1** Test Setup and Procedure

#### 5.1.1 Test Setup



#### **5.1.2** Test Procedure

The output level of the auxiliary signal generator was set to 70dBuV at the EUT antenna terminal with 75 ohms impedance with an un-modulated carrier.

The highest emissions were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The power of EUT was switched off to make sure the emission was not contributed by the auxiliary signal generator. While doing so, the interconnecting cables and major parts of the system were moved around to maximize the emission.

**Report Number: ISL-17LE479CE** 

#### **5.1.3** EMI Receiver Configuration (for the frequencies tested)

Frequency Range: 30MHz-2150MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz



#### **5.1.4** Limit

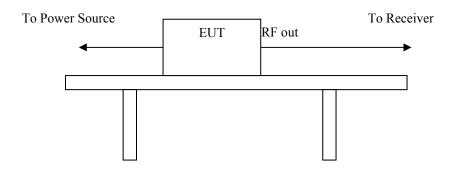
#### Applicable to:

- 1. TV broadcast receiver tuner ports with an accessible connector.
- 2. RF modulator output ports.
- 3. FM broadcast receiver tuner ports with an accessible connector.

| Table<br>clause | Frequency range | Detector type/<br>bandwidth |       | Class B lim<br>dB(μV) 75           | Applicability                    |        |
|-----------------|-----------------|-----------------------------|-------|------------------------------------|----------------------------------|--------|
|                 | MHz             |                             | Other | Local<br>Oscillator<br>Fundamental | Local<br>Oscillator<br>Harmonics |        |
| A12.1           | 30 – 950        |                             | 46    | 46                                 | 46                               | See a) |
|                 | 950 – 2 150     | For frequencies<br>≤1 GHz   | 46    | 54                                 | 54                               |        |
| A12.2           | 950 – 2 150     | Quasi Peak/                 | 46    | 54                                 | 54                               | See b) |
| A12.3           | 30 – 300        | 120 kHz                     | 46    | 54                                 | 50                               | See c) |
|                 | 300 – 1 000     |                             |       |                                    | 52                               |        |
| A12.4           | 30 – 300        | For frequencies             | 46    | 66                                 | 59                               | See d) |
|                 | 300 – 1 000     | ≥1 GHz                      |       |                                    | 52                               |        |
| A12.5           | 30 – 950        | Peak/<br>1 MHz              | 46    | 76                                 | 46                               | See e) |
|                 | 950 – 2 150     | 2                           |       | n/a                                | 54                               |        |

Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

- b) Tuner units (not the LNB) for satellite signal reception.
- c) Frequency modulation audio receivers and PC tuner cards.
- d) Frequency modulation car radios.
- Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.


<sup>\*\*</sup>Remarks: It is not necessary to be tested on this item.



## 6. Differential Voltage Emissions

#### **6.1 Test Setup and Procedure**

#### 6.1.1 Test Setup



#### **6.1.2** Test Procedure

The output level of the auxiliary signal generator was set to 70dBuV at the EUT antenna terminal with 75 ohms impedance with an un-modulated carrier.

The highest emissions were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The power of EUT was switched off to make sure the emission was not contributed by the auxiliary signal generator. While doing so, the interconnecting cables and major parts of the system were moved around to maximize the emission.

**Report Number: ISL-17LE479CE** 

#### 6.1.3 EMI Receiver Configuration (for the frequencies tested)

Frequency Range: 30MHz-2150MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz



#### **6.1.4** Limit

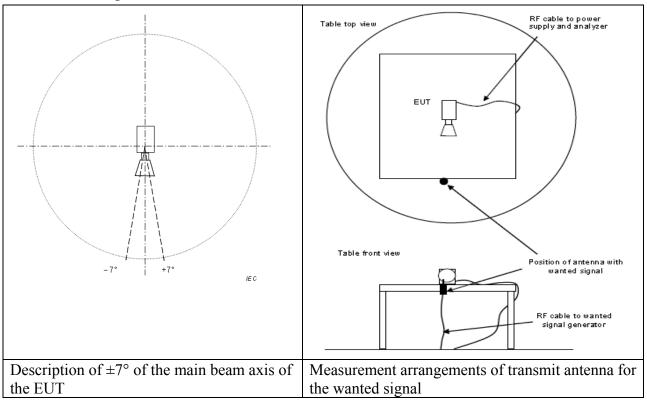
#### Applicable to:

- 1. TV broadcast receiver tuner ports with an accessible connector.
- 2. RF modulator output ports.
- 3. FM broadcast receiver tuner ports with an accessible connector.

| Table<br>clause | Frequency range | Detector type/<br>bandwidth |       | Class B lim<br>dB(μV) 75           | Applicability                    |        |
|-----------------|-----------------|-----------------------------|-------|------------------------------------|----------------------------------|--------|
|                 | MHz             |                             | Other | Local<br>Oscillator<br>Fundamental | Local<br>Oscillator<br>Harmonics |        |
| A12.1           | 30 – 950        |                             | 46    | 46                                 | 46                               | See a) |
|                 | 950 – 2 150     | For frequencies<br>≤1 GHz   | 46    | 54                                 | 54                               |        |
| A12.2           | 950 – 2 150     | Quasi Peak/                 | 46    | 54                                 | 54                               | See b) |
| A12.3           | 30 – 300        | 120 kHz                     | 46    | 54                                 | 50                               | See c) |
|                 | 300 – 1 000     |                             |       |                                    | 52                               |        |
| A12.4           | 30 – 300        | For frequencies             | 46    | 66                                 | 59                               | See d) |
|                 | 300 – 1 000     | ≥1 GHz                      |       |                                    | 52                               |        |
| A12.5           | 30 – 950        | Peak/<br>1 MHz              | 46    | 76                                 | 46                               | See e) |
|                 | 950 – 2 150     | 2                           |       | n/a                                | 54                               |        |

Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

- b) Tuner units (not the LNB) for satellite signal reception.
- c) Frequency modulation audio receivers and PC tuner cards.
- d) Frequency modulation car radios.
- e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.


<sup>\*\*</sup>Remarks: It is not necessary to be tested on this item.



# 7. Outdoor units of home satellite receiving systems

## 7.1 Test Setup and Procedure

## 7.1.1 Test Setup



#### 7.1.2 Test Procedure

The input signal shall be adjusted to get the maximum rated output level from the EUT. For the measurement in the frequency range from 30 MHz to 18 GHz the input signal shall be adjusted so that the output frequency is within this frequency range. For the measurement in the frequency range above 1 GHz, the frequency of the input signal shall be adjusted in such a way that the EUT is measured, as a minimum, at the lowest, middle and highest rated output frequency within the measured frequency range.

**Report Number: ISL-17LE479CE** 

## 7.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 30MHz--1000MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz

Frequency Range: Above 1000MHz
Detector Function: Peak/Average Mode

Resolution Bandwidth: 1MHz



#### 7.1.4 Limit

| Table Frequency     |                     | Measurem ent                |                      | Class B                      | Applicable to    |                                                                                                  |
|---------------------|---------------------|-----------------------------|----------------------|------------------------------|------------------|--------------------------------------------------------------------------------------------------|
| Clause Range<br>MHz | <b>Range</b><br>MHz | Facility<br>(see Table A.1) | <b>Distance</b><br>m | Detector type /<br>Bandwidth | Limits           |                                                                                                  |
| A7.1                | 30 to 1 000         | SAC / OATS /<br>FAR         | See<br>Table A.4     | Quasi Peak /<br>120 kHz      | See<br>Table A.4 |                                                                                                  |
| A7.2                | 1 000 to 2 500      | FSOATS                      | 3                    | Average / 1 MHz              | 50<br>dB(μV/m)   | LO leakage and spurious radiated                                                                 |
|                     | 2 500 to 18 000     |                             |                      |                              | 64<br>dB(μV/m)   | emissions from the EUT,<br>in the region outside ±7°<br>of the main beam axis.<br>See Figure H.1 |
| A7.3                | 1 000 to 18 000     | FSOATS                      | 3                    | Average / 1 MHz              | 37<br>dB(μV/m)   | LO leakage from the EUT, in the region within                                                    |
| A7.4                | 1 000 to 18 000     | Conducted<br>(Clause H.4)   | n/a                  | Average / 1 MHz              | 30<br>dBpW       | ±7° of the main beam<br>axis. See Figure H.1                                                     |

For details of the EUT configuration, see Annex H.

For radiated emissions measurements at frequencies up to 1 GHz, the requirements defined in Table A.4 shall be satisfied.

Apply the appropriate limits across the entire frequency range.

Apply the limits defined in table Clause A7.1 and A7.2. Also apply the limits defined in either table Clause A7.3 or A7.4.

**Report Number: ISL-17LE479CE** 

\*\*Remarks: It is not necessary to be tested on this item.



# 8. Electrostatic discharge (ESD) immunity

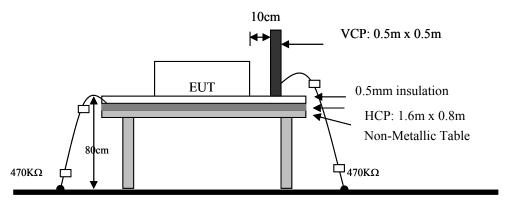
# 8.1 Test Specification and Setup

#### 8.1.1 Test Specification

| Port:           | Enclosure                        |
|-----------------|----------------------------------|
| Basic Standard: | EN 61000-4-2/ IEC 61000-4-2      |
|                 | (details referred to Sec 1.2)    |
| Test Level:     | Air +/- 2 kV, +/- 4 kV, +/- 8 kV |
|                 | Contact +/- 4 kV                 |
| Criteria:       | В                                |
| Test Procedure  | refer to ISL QA -T4-E-S7         |
| Temperature:    | 22 °C                            |
| Humidity:       | 45%                              |

## **Selected Test Point**

Air: discharges were applied to slots, aperture or insulating surfaces. 10 single air


discharges were applied to each selected points.

Contact: Total 200 discharges minimum were to the selected contact points.

Indirect Contact Points: 25 discharges were applied to center of one edge of VCP and each EUT side of HCP with 10 cm away from EUT.

#### 8.1.2 Test Setup

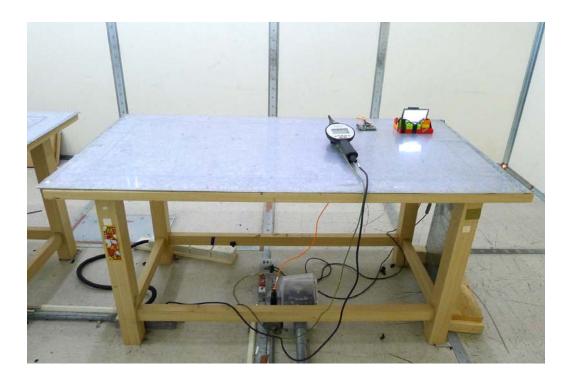
EUT is 1m from the wall and other metallic structure. When Battery test mode is needed, a cable with one  $470K\Omega$  resister at two rare ends is connected from metallic part of EUT and screwed to HCP.



**Report Number: ISL-17LE479CE** 

Ground reference Plane

#### 8.1.3 Test Result




# 8.2 Test Point

Red arrow lines indicate the contact points, and blue arrow lines indicate the air points.

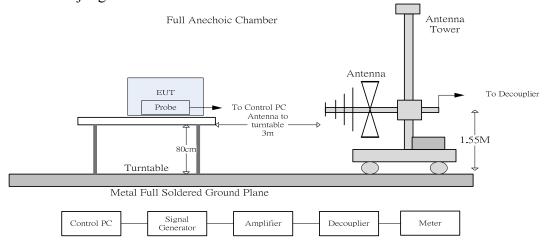








# 9. Radio-Frequency, Electromagnetic Field immunity


## 9.1 Test Specification and Setup

## 9.1.1 Test Specification

| Port:             | Enclosure                     |
|-------------------|-------------------------------|
| Basic Standard:   | EN 61000-4-3/ IEC 61000-4-3   |
|                   | (details referred to Sec 1.2) |
| Test Level:       | 3 V/m                         |
| Modulation:       | AM 1KHz 80%                   |
| Frequency range:  | 80 MHz~1 GHz                  |
| Frequency Step:   | 1% of last step frequency     |
| Dwell time:       | 3s                            |
| Polarization:     | Vertical and Horizontal       |
| EUT Azimuth Angle | ⊠0° ⊠90° ⊠180° ⊠270°          |
| Criteria:         | A                             |
| Test Procedure    | refer to ISL QA -T4-E-S8      |
| Temperature:      | 23°C                          |
| Humidity:         | 59%                           |

# 9.1.2 Test Setup

The field sensor is placed at one calibration grid point to check the intensity of the established fields on both polarizations. EUT is adjusted to have each side of EUT face coincident with the calibration plane. A CCD camera and speakers are used to monitor the condition of EUT for the performance judgment.



**Report Number: ISL-17LE479CE** 

#### 9.1.3 Test Result







# 10. Electrical Fast transients/burst immunity

# 10.1 Test Specification and Setup

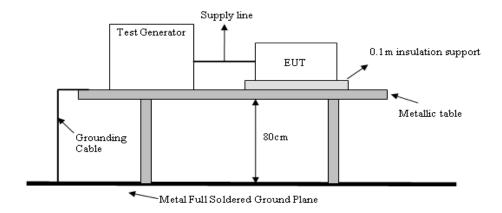
# 10.1.1 Test Specification

| Port:                 | AC mains                      |
|-----------------------|-------------------------------|
| Basic Standard:       | EN 61000-4-4/ IEC 61000-4-4   |
|                       | (details referred to Sec 1.2) |
| Test Level:           | AC Power Port: +/- 1 kV       |
| Rise Time:            | 5ns                           |
| Hold Time:            | 50ns                          |
| Repetition Frequency: | 5KHz                          |
| Criteria:             | В                             |
| Test Procedure        | refer to ISL QA -T4-E-S9      |
| Temperature:          | 23 °C                         |
| Humidity:             | 60%                           |

# **Test Procedure**

The EUT was setup on a nonconductive table 0.1 m above a reference ground plane.

|                    | 1        |        |         |
|--------------------|----------|--------|---------|
| <b>Test Points</b> | Polarity | Result | Comment |
| Line               | +        | N      | 60 sec  |
|                    | -        | N      | 60 sec  |
| Neutral            | +        | N      | 60 sec  |
|                    | -        | N      | 60 sec  |
| Line to            | +        | N      | 60 sec  |
| Neutral            | -        | N      | 60 sec  |


**Report Number: ISL-17LE479CE** 

Note: 'N' means normal, the EUT function is correct during the test.



## 10.1.2 Test Setup

EUT is at least 50cm from the conductive structure.



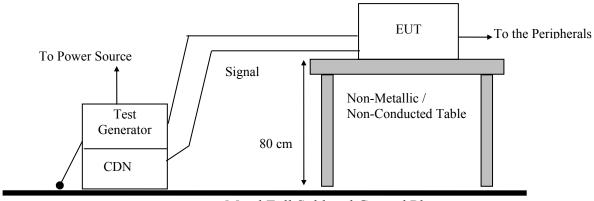
## 10.1.3 Test Result

Performance of EUT complies with the given specification








# 11. Surge Immunity

# 11.1 Test Specification and Setup

# 11.1.1 Test Specification

| Port:            | AC mains                      |
|------------------|-------------------------------|
| Basic Standard:  | EN 61000-4-5/ IEC 61000-4-5   |
|                  | (details referred to Sec 1.2) |
| Test Level:      | Line to Line:                 |
|                  | +/- 0.5 kV, +/- 1 kV          |
| Rise Time:       | 1.2us                         |
| Hold Time:       | 50us                          |
| Repetition Rate: | 30 seconds                    |
| Angle:           | ⊠0° ⊠90° ⊠180° ⊠270°          |
| Criteria:        | В                             |
| Test Procedure:  | refer to ISL QA -T4-E-S10     |
| Temperature:     | 22°C                          |
| Humidity:        | 61%                           |

# 11.1.2 Test Setup



Metal Full Soldered Ground Plane

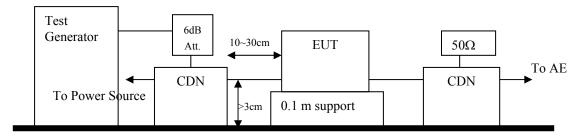
**Report Number: ISL-17LE479CE** 

## 11.1.3 Test Result








# 12. Immunity to Conductive Disturbance

# 12.1 Test Specification and Setup

# 12.1.1 Test Specification

| Port:            | AC mains                      |  |
|------------------|-------------------------------|--|
| Basic Standard:  | EN 61000-4-6/ IEC 61000-4-6   |  |
|                  | (details referred to Sec 1.2) |  |
| Test Level:      | 3 V                           |  |
| Modulation:      | AM 1KHz 80%                   |  |
| Frequency range: | 0.15 MHz - 80MHz              |  |
| Frequency Step:  | 1% of last Frequency          |  |
| Dwell time:      | 3s                            |  |
| Criteria:        | A                             |  |
| CDN Type:        | CDN M2+M3                     |  |
| Test Procedure   | refer to ISL QA -T4-E-S11     |  |
| Temperature:     | 22°C                          |  |
| Humidity:        | 58%                           |  |

# 12.1.2 Test Setup



**Report Number: ISL-17LE479CE** 

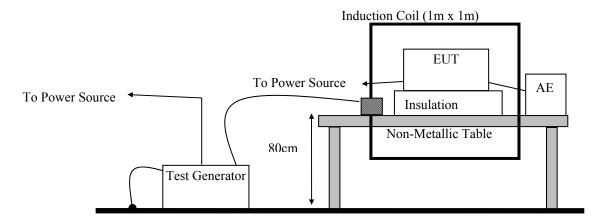
Reference Ground Plane

## 12.1.3 Test Result








# 13. Power Frequency Magnetic Field immunity

# 13.1 Test Specification and Setup

# 13.1.1 Test Specification

| Port:           | Enclosure                     |
|-----------------|-------------------------------|
| Basic Standard: | EN 61000-4-8/ IEC 61000-4-8   |
|                 | (details referred to Sec 1.2) |
| Test Level:     | 1A/m                          |
| Polarization:   | X, Y, Z                       |
| Criteria:       | A                             |
| Test Procedure  | refer to ISL QA -T4-E-S12     |
| Temperature:    | 22°C                          |
| Humidity:       | 59%                           |

# 13.1.2 Test Setup



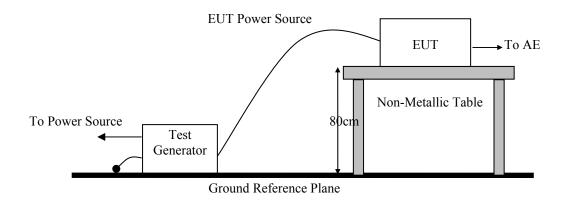
**Report Number: ISL-17LE479CE** 

# 13.1.3 Test Result








# 14. Voltage Dips, Short Interruption and Voltage Variation immunity

# 14.1 Test Specification and Setup

# 14.1.1 Test Specification

| Port:           | AC mains                      |  |
|-----------------|-------------------------------|--|
| Basic Standard: | EN 61000-4-11/ IEC 61000-4-11 |  |
|                 | (details referred to Sec 1.2) |  |
| Test Level:     | >95% in 0.5 period            |  |
| Criteria:       | В                             |  |
| Test Level:     | 30% in 25 period              |  |
| Criteria:       | C                             |  |
| Test Level:     | >95% in 250 period            |  |
| Criteria:       | C                             |  |
| Phase:          | 0°; 180°                      |  |
| Test intervals: | 3 times with 10s each         |  |
| Test Procedure  | refer to ISL QA -T4-E-S13     |  |
| Temperature:    | 23°C                          |  |
| Humidity:       | 60%                           |  |

# **14.1.2** Test Setup



**Report Number: ISL-17LE479CE** 

## 14.1.3 Test Result



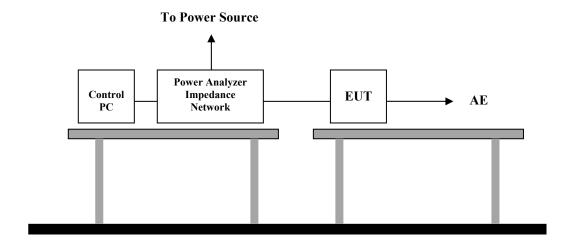




# 15. Harmonics

## 15.1 Test Specification and Setup

## **15.1.1 Test Specification**


| Port:               | AC mains                      |
|---------------------|-------------------------------|
| Active Input Power: | <75W                          |
| Basic Standard:     | EN61000-3-2/IEC 61000-3-2     |
|                     | (details referred to Sec 1.2) |
| Test Duration:      | 2.5min                        |
| Class:              | A                             |
| Test Procedure      | refer to ISL QA -T4-E-S14     |
| Temperature:        | 23°C                          |
| Humidity:           | 60%                           |

## **Test Procedure**

The EUT is supplied in series with shunts or current transformers from a source having the same nominal voltage and frequency as the rated supply voltage and frequency of the EUT. The EUT is configured to its rated current with additional resistive load when the testing is performed.

Equipment having more than one rated voltage shall be tested at the rated voltage producing the highest harmonics as compared with the limits.

## 15.1.2 Test Setup





## 15.1.3 Limit

Limits of Class **D** Harmonics Currents

|                                        | Maximum Permissible       | Maximum Permissible harmonic |
|----------------------------------------|---------------------------|------------------------------|
| Harmonics Order                        | harmonic current per watt | current                      |
| N                                      | mA/W                      | A                            |
| 3                                      | 3.4                       | 2.30                         |
| 5                                      | 1.9                       | 1.14                         |
| 7                                      | 1.0                       | 0.77                         |
| 9                                      | 0.5                       | 0.40                         |
| 11                                     | 0.35                      | 0.33                         |
| $13 \le n \le 39$ (odd harmonics only) | 3.85/n                    | See limit of Class A         |

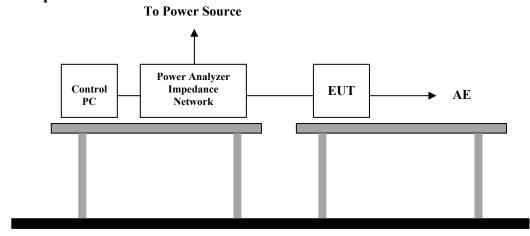
## 15.1.4 Test Result

Active input power under 75W, no limit apply, declare compliance



# 16. Voltage Fluctuations

# 16.1 Test Specification and Setup


# 16.1.1 Test Specification

| Port:               | AC mains                      |  |
|---------------------|-------------------------------|--|
| Basic Standard:     | EN61000-3-3/IEC61000-3-3      |  |
|                     | (details referred to Sec 1.2) |  |
| Test Procedure      | refer to ISL QA -T4-E-S14     |  |
| Observation period: | For Pst 10min                 |  |
|                     | For Plt 2 hours               |  |
| Temperature:        | 23°C                          |  |
| Humidity:           | 60%                           |  |

# **Test Procedure**

The EUT is supplied in series with reference impedance from a power source with the voltage and frequency as the nominal supply voltage and frequency of the EUT.

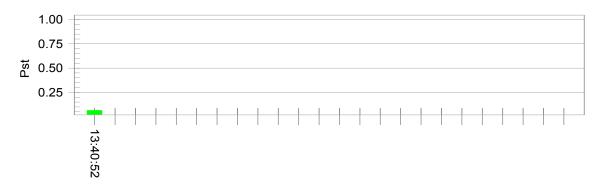
# 16.1.2 Test Setup



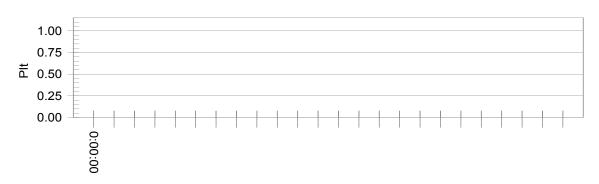
**Report Number: ISL-17LE479CE** 

## 16.1.3 Test Result




#### 16.2 Test Data

# Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)


Test duration (min): 10 Data file name: CTSMXL\_F-002958.cts\_data

Test Result: Pass Status: Test Completed

#### Pst<sub>i</sub> and limit line European Limits



#### Plt and limit line



| Parameter values recorded during | the test: |
|----------------------------------|-----------|
| Vrms at the end of test (Volt):  | 229.83    |

| Highest dt (%):               | 0.00  | Test limit (%):  | N/A   | N/A  |
|-------------------------------|-------|------------------|-------|------|
| T-max (mS):                   | 0.0   | Test limit (mS): | 500.0 | Pass |
| Highest dc (%):               | 0.00  | Test limit (%):  | 3.30  | Pass |
| Highest dmax (%):             | 0.06  | Test limit (%):  | 4.00  | Pass |
| Highest Pst (10 min. period): | 0.064 | Test limit:      | 1.000 | Pass |
| Highest Plt (2 hr. period):   | 0.028 | Test limit:      | 0.650 | Pass |







# 17. Appendix

# 17.1 Appendix A: Test Equipment

# 17.1.1 Test Equipment List

| Location      | <b>Equipment Name</b>    | Brand             | Model                   | S/N              | Last Cal.  | Next Cal.  |
|---------------|--------------------------|-------------------|-------------------------|------------------|------------|------------|
| Con02         |                          |                   |                         |                  | Date       | Date       |
| Conduction 02 | LISN 20                  | R&S               | ENV216                  | 101477           | 07/15/2017 | 07/15/2018 |
| Conduction 02 | LISN 23                  |                   | FCC-LISN-50-<br>25-2-01 | 07038            | 12/30/2016 | 12/30/2017 |
| Conduction 02 | Conduction 02-1<br>Cable | WOKEN             | CFD 300-NL              | Conduction 02 -1 | 08/29/2016 | 08/29/2017 |
| Conduction 02 | EMI Receiver 14          | ROHDE&<br>SCHWARZ | ESCI                    | 101034           | 06/06/2017 | 06/06/2018 |

| Location                 | <b>Equipment Name</b>           | Brand              | Model                                       | S/N               | Last Cal.  | Next Cal.  |
|--------------------------|---------------------------------|--------------------|---------------------------------------------|-------------------|------------|------------|
| Chmb12                   |                                 |                    |                                             |                   | Date       | Date       |
| Radiation<br>(Chamber12) | BILOG Antenna 18                | Schwarzbeck        | Schwarzbeck<br>VULB<br>9168+EMCI-N-<br>6-05 | 646               | 01/05/2017 | 01/05/2018 |
| Radiation (Chamber12)    | Preamplifier 26                 | EMCI               |                                             | 980297            | 12/27/2016 | 12/27/2017 |
| Radiation (Chamber12)    | Coaxial Cable Chmb<br>12-10M-01 | PEWC               | CFD400-NL                                   | Chmb<br>12-10M-01 | 10/13/2016 | 10/13/2017 |
| Radiation (Chamber12)    | EMI Receiver 10                 | ROHDE &<br>SCHWARZ | ESCI                                        | 100567            | 08/11/2016 | 08/11/2017 |

| Location           | <b>Equipment Name</b>             | Brand              | Model                       | S/N        | Last Cal.  | Next Cal.  |
|--------------------|-----------------------------------|--------------------|-----------------------------|------------|------------|------------|
| Chmb14             |                                   |                    |                             |            | Date       | Date       |
| Rad. Above<br>1GHz | Spectrum Analyzer 24 (1G~26.5GHz) | Agilent            | N9010A                      | MY49060537 | 08/11/2016 | 08/11/2017 |
| Rad. Above<br>1GHz | Horn Antenna 06 (1G~18G)          | ETS                | 3117                        | 00066665   | 11/30/2016 | 11/30/2017 |
| Rad. Above<br>1GHz | Preamplifier 13 (1G-18G)          | MITEQ              | JS44-00101800<br>-25-10P-44 | 1329256    | 08/12/2016 | 08/12/2017 |
| Rad. Above<br>1GHz | Microwave Cable 24                | HUBER<br>SUHNER    | EMC104-NM-S<br>M-800        | 140905     | 09/26/2016 | 09/26/2017 |
| Rad. Above<br>1GHz | Microwave Cable 29                | EMC<br>Instruments | EMC104-NM-S<br>M-6000       | 170107     | 02/23/2017 | 02/23/2018 |



| Location   | <b>Equipment Name</b>                                    | Brand                     | Model                 | S/N                  | Last Cal.<br>Date | Next Cal.<br>Date |
|------------|----------------------------------------------------------|---------------------------|-----------------------|----------------------|-------------------|-------------------|
| EN61K-4-2  | ESD Gun 06                                               | EM TEST                   | Dito                  | V0729102699          | 07/05/2017        | 07/05/2018        |
| EN61K-4-3  | Broadband<br>Log-Periodic<br>Antenna                     | AR                        | AT1080                | 310698               | N/A               | N/A               |
| EN61K-4-3  | Horn Antenna RF-01                                       | AR                        | ATS700M11<br>G        | 0335864              | N/A               | N/A               |
| EN61K-4-3  | Amplifier<br>80Mz~1GHz 250W                              | AR                        | 250W1000A             | 312494               | N/A               | N/A               |
| EN61K-4-3  | Amplifier<br>800MHz~4.2GHz<br>50W                        | AR                        | 50S1G4M1              | 312762               | N/A               | N/A               |
| EN61K-4-3  | Amplifier 4.0~8.0GHz 35W                                 | AR                        | 35S4G8AM1             | 0335752              | N/A               | N/A               |
| EN61K-4-3  | Broadband Coupler 80M~1GHz                               | Amplifier<br>Research     | DC6180A               | 0341805              | N/A               | N/A               |
| EN61K-4-3  | Coaxial Cable                                            | INSULATED                 | NPS-4806-23<br>60-NP3 | 108599.003.01.0<br>3 | N/A               | N/A               |
| EN61K-4-3  | Broadband Coupler 0.8G~4.26GHz                           | AR                        | DC7144A               | 0335226              | N/A               | N/A               |
| EN61K-4-3  | Broadband Coupler 4G~8GHz                                | AR                        | DC7350A               | 0335817              | N/A               | N/A               |
| EN61K-4-3  | Signal Generator 07                                      | ROHDE&<br>SCHWARZ         | SMB100A               | 107780               | 10/05/2016        | 10/05/2017        |
| EN61K-4-4  | EFT and SURGE<br>Test System                             | EM TEST                   | UCS-500<br>M6B        | V0728102674          | 02/08/2017        | 02/08/2018        |
| EN61K-4-4  | Capacitive Coupling Clamp                                | EM TEST                   | HFK                   | 0907-106             | 02/08/2017        | 02/08/2018        |
| EN61K-4-5  | CDN-UTP8 ED3                                             | EMC-PARTNER               | CDN-UTP8              | 1509                 | 04/18/2017        | 04/18/2018        |
| EN61K-4-5  | SURGE-TESTER                                             | EMC Partner               | MIG0603IN3            | 523                  | 04/14/2017        | 03/10/2018        |
| EN61K-4-6  | CDN M2+M3 02                                             | Frankonia                 | CDN M2+M3             | A3011024             | 09/14/2015        | 09/14/2017        |
| EN61K-4-6  | CDN T2 04                                                | FCC Inc.                  | FCC-801-T2            | 02067                | 08/16/2016        | 08/16/2017        |
| EN61K-4-6  | CDN T4 06                                                | FCC Inc.                  | FCC-801-T4            | 02017                | 08/04/2016        | 08/04/2017        |
| EN61K-4-6  | CDN T8-10 1                                              | Teseq GmbH                | CDN T8 10             | 41242                | 02/22/2017        | 02/22/2018        |
| EN61K-4-6  | Coaxial Cable 4-6<br>02-1                                | •                         |                       | 4-6 02-1             | N/A               | N/A               |
| EN61K-4-6  | Conducted Immunity<br>Test System 02                     | Frankonia                 | CIT-10-75-D<br>C      | 126B1301/2014        | 02/23/2017        | 02/23/2018        |
| EN61K-4-6  | EM-Clamp                                                 | Schaffner                 | KEMZ-801              | 19215                | 10/11/2016        | 10/11/2017        |
| EN61K-4-8  | Magnetic Field<br>Immunity Loop                          | FCC                       | F-1000-4-8-L-<br>1M   | 01037                | 06/09/2017        | 06/09/2018        |
| EN61K-4-8  | Magnetic Field Test<br>Generator                         | FCC                       |                       | 01038                | 06/09/2017        | 06/09/2018        |
| EN61K-4-11 | Voltage Dip and UP<br>Simulator                          | NoiseKen                  | VDS-2002              | VDS0640162           | 11/10/2016        | 11/10/2017        |
| 2          | (Harmonic/Flicker) MX Series CTSH Compliance Test System | California<br>Instruments | MX60T04GH<br>10400    | 72793                | 06/20/2017        | 06/20/2018        |

**Report Number: ISL-17LE479CE** 

PS: N/A => The equipment does not need calibration.



# \*\*Software for Controlling Spectrum/Receiver and Calculating Test Data

| Test Item      | Filename               | Version        |
|----------------|------------------------|----------------|
| EN61000-3-2    | California Instruments | CTSMXL V2.13.1 |
| EN61000-3-3    | California Instruments | CTSMXL V2.13.1 |
| EN61000-4-2    | N/A                    | 2.0            |
| EN61000-4-3 i2 |                        | 4.130102k      |
| EN61000-4-4    | EMC TEST               | 4.10           |
| EN61000-4-5    | EMC Partner            | 1.69           |
| EN61000-4-6    | FRANKONIA CD-LAB       | V5.221         |
|                |                        | V 3.221        |
| EN61000-4-8    | N/A                    |                |
| EN61000-4-11   | NOISE KEN              | 2.0            |

| Site                 | Filename | Version  | <b>Issue Date</b> |
|----------------------|----------|----------|-------------------|
| Conduction/Radiation | EZ EMC   | ISL-03A2 | 3/6/2013          |



# 17.2 Appendix B: Uncertainty of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2011. The coverage factor k=2 yields approximately a 95 % level of confidence.

<Conduction 02> AMN: ±2.88dB

<Chamber 12 (10M)>

Horizontal

30MHz~200MHz: ±3.93dB 200MHz~1000MHz: ±4.09dB

Vertical

30MHz~200MHz: ±4.58dB 200MHz~1000MHz: ±3.99dB

<Chamber 14 (3M)>

 $1GHz\sim6GHz$ :  $\pm4.94dB$ 

# <Immunity 02>

| Test item                | Uncertainty | Test item               | Uncertainty |
|--------------------------|-------------|-------------------------|-------------|
| EN 61000-4-2 (ESD)       |             | EN 61000-4-6 (CS)       |             |
| Rise time tr             | ≦ 15%       | CDN                     | ± 1.36dB    |
| Peak current Ip          | ≦ 6.3%      | EM Clamp                | ± 3.19dB    |
| current at 30 ns         | ≦ 6.3%      | EN 61000-4-8 (Magnetic) | ± 5.59%     |
| current at 60 ns         | ≦ 6.3%      | EN 61000-4-11 (Dips)    |             |
| EN 61000-4-3 (RS)        | ± 2.19dB    | Time                    | ± 2.80%     |
| EN 61000-4-4 (EFT)       |             | Voltage                 | ± 0.04%     |
| voltage rise time (tr)   | ± 6.2%      | EN 61000-4-34 (Dips)    |             |
| peak voltage value (VP)  | ± 8.6%      | Time                    | ± 2.80%     |
| voltage pulse width (tw) | ± 5.9%      | Voltage                 | ± 1.70%     |
| EN 61000-4-5 (Surge)     |             |                         |             |
| Time                     | ± 3.9%      |                         |             |
| Voltage                  | ± 3.9%      |                         |             |
| Current                  | ± 2.7%      |                         |             |

| Test item                                  | Uncertainty | Test item                                | Uncertainty                      |
|--------------------------------------------|-------------|------------------------------------------|----------------------------------|
| EN 61000-3-2<br>(Harmonics)                | ± 3.98 %    | EN 61000-3-12<br>(Harmonics)             | Voltage ±0.10%<br>Current ±0.15% |
| EN 61000-3-3<br>(Fluctuations and Flicker) | ± 3.98 %    | EN 61000-3-11 (Fluctuations and Flicker) | Voltage ±0.10%<br>Current ±0.15% |



# 17.3 Appendix C: Photographs of EUT

Please refer to the File of ISL-17LE479P